Suppr超能文献

基于机器学习的小儿炎症性肠病分类。

Classification of Paediatric Inflammatory Bowel Disease using Machine Learning.

机构信息

Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK.

Institute for Life Sciences, University of Southampton, Southampton, UK.

出版信息

Sci Rep. 2017 May 25;7(1):2427. doi: 10.1038/s41598-017-02606-2.

Abstract

Paediatric inflammatory bowel disease (PIBD), comprising Crohn's disease (CD), ulcerative colitis (UC) and inflammatory bowel disease unclassified (IBDU) is a complex and multifactorial condition with increasing incidence. An accurate diagnosis of PIBD is necessary for a prompt and effective treatment. This study utilises machine learning (ML) to classify disease using endoscopic and histological data for 287 children diagnosed with PIBD. Data were used to develop, train, test and validate a ML model to classify disease subtype. Unsupervised models revealed overlap of CD/UC with broad clustering but no clear subtype delineation, whereas hierarchical clustering identified four novel subgroups characterised by differing colonic involvement. Three supervised ML models were developed utilising endoscopic data only, histological only and combined endoscopic/histological data yielding classification accuracy of 71.0%, 76.9% and 82.7% respectively. The optimal combined model was tested on a statistically independent cohort of 48 PIBD patients from the same clinic, accurately classifying 83.3% of patients. This study employs mathematical modelling of endoscopic and histological data to aid diagnostic accuracy. While unsupervised modelling categorises patients into four subgroups, supervised approaches confirm the need of both endoscopic and histological evidence for an accurate diagnosis. Overall, this paper provides a blueprint for ML use with clinical data.

摘要

儿科炎症性肠病 (PIBD) 包括克罗恩病 (CD)、溃疡性结肠炎 (UC) 和未分类炎症性肠病 (IBDU),是一种复杂的多因素疾病,发病率不断上升。准确诊断 PIBD 对于及时有效的治疗至关重要。本研究利用机器学习 (ML) 技术,对 287 名确诊为 PIBD 的儿童的内镜和组织学数据进行分类。使用这些数据来开发、训练、测试和验证一种用于疾病分类的 ML 模型。无监督模型显示 CD/UC 之间存在重叠和广泛聚类,但没有明确的亚型划分,而层次聚类则确定了四个新的亚组,其特征是结肠受累程度不同。仅使用内镜数据、仅使用组织学数据和结合内镜/组织学数据开发了三种监督 ML 模型,其分类准确性分别为 71.0%、76.9%和 82.7%。最优的组合模型在来自同一诊所的 48 名 PIBD 患者的独立统计队列上进行了测试,准确地分类了 83.3%的患者。本研究采用数学建模方法对内镜和组织学数据进行分析,以提高诊断准确性。虽然无监督模型将患者分为四个亚组,但有监督的方法证实了准确诊断需要内镜和组织学证据的结合。总的来说,本文为 ML 在临床数据中的应用提供了蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53ea/5445076/78647e84be11/41598_2017_2606_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验