Cannarozzi Anna Lucia, Massimino Luca, Latiano Anna, Parigi Tommaso Lorenzo, Giuliani Francesco, Bossa Fabrizio, Di Brina Anna Laura, Ungaro Federica, Biscaglia Giuseppe, Danese Silvio, Perri Francesco, Palmieri Orazio
Division of Gastroenterology, Fondazione IRCCS - Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
Gastroenterology and Digestive Endoscopy Department, IRCCS Ospedale San Raffaele, Milan, Italy.
Comput Struct Biotechnol J. 2024 Sep 11;23:3407-3417. doi: 10.1016/j.csbj.2024.09.003. eCollection 2024 Dec.
Inflammatory bowel diseases (IBD) are classified into two entities, namely Crohn's disease (CD) and ulcerative colitis (UC), which differ in disease trajectories, genetics, epidemiological, clinical, endoscopic, and histopathological aspects. As no single golden standard modality for diagnosing IBD exists, the differential diagnosis among UC, CD, and non-IBD involves a multidisciplinary approach, considering professional groups that include gastroenterologists, endoscopists, radiologists, and pathologists. In this context, histological examination of endoscopic or surgical specimens plays a fundamental role. Nevertheless, in differentiating IBD from non-IBD colitis, the histopathological evaluation of the morphological lesions is limited by sampling and subjective human judgment, leading to potential diagnostic discrepancies. To overcome these limitations, artificial intelligence (AI) techniques are emerging to enable automated analysis of medical images with advantages in accuracy, precision, and speed of investigation, increasing interest in the histological analysis of gastrointestinal inflammation. This review aims to provide an overview of the most recent knowledge and advances in AI methods, summarizing its applications in the histopathological analysis of endoscopic biopsies from IBD patients, and discussing its strengths and limitations in daily clinical practice.
炎症性肠病(IBD)分为两种类型,即克罗恩病(CD)和溃疡性结肠炎(UC),它们在疾病发展轨迹、遗传学、流行病学、临床、内镜检查及组织病理学方面存在差异。由于不存在诊断IBD的单一金标准模式,UC、CD和非IBD之间的鉴别诊断需要多学科方法,涉及包括胃肠病学家、内镜医师、放射科医师和病理学家在内的专业团队。在此背景下,内镜或手术标本的组织学检查起着至关重要的作用。然而,在区分IBD与非IBD结肠炎时,形态学病变的组织病理学评估受取样和人为主观判断的限制,可能导致诊断差异。为克服这些局限性,人工智能(AI)技术正在兴起,能够对医学图像进行自动分析,在检查的准确性、精确性和速度方面具有优势,从而增加了对胃肠道炎症组织学分析的兴趣。本综述旨在概述AI方法的最新知识和进展,总结其在IBD患者内镜活检组织病理学分析中的应用,并讨论其在日常临床实践中的优势和局限性。