Suppr超能文献

迈向用于模式分类的通用异构集成。

Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification.

作者信息

Nanni Loris, Brahnam Sheryl, Ghidoni Stefano, Lumini Alessandra

机构信息

DEI, University of Padova, Via Gradenigo 6, 35131 Padova, Italy.

Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA.

出版信息

Comput Intell Neurosci. 2015;2015:909123. doi: 10.1155/2015/909123. Epub 2015 Aug 27.

Abstract

We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset.

摘要

我们对25个数据集(14个图像数据集和11个UCI数据挖掘数据集)上不同分类方法的性能进行了广泛研究。目的是找到通用(GP)异构集成(几乎不需要参数调整),其在多个数据集上具有竞争力。本研究中考察的最先进分类器包括支持向量机、高斯过程分类器、adaboost的随机子空间、旋转增强的随机子空间和深度学习分类器。我们证明,基于不同分类器求和规则的简单融合的异构集成在所有25个数据集上都表现得很稳定。我们调查的最重要结果是表明,一些最新方法,包括我们在本文中提出的异构集成,即使在为每个数据集仔细调整内核选择和支持向量机参数的情况下,也能够优于支持向量机分类器(使用LibSVM实现)。

相似文献

1
Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification.
Comput Intell Neurosci. 2015;2015:909123. doi: 10.1155/2015/909123. Epub 2015 Aug 27.
2
Random subspace ensembles for FMRI classification.
IEEE Trans Med Imaging. 2010 Feb;29(2):531-42. doi: 10.1109/TMI.2009.2037756.
3
Classifier ensembles for fMRI data analysis: an experiment.
Magn Reson Imaging. 2010 May;28(4):583-93. doi: 10.1016/j.mri.2009.12.021. Epub 2010 Jan 21.
4
Bias in error estimation when using cross-validation for model selection.
BMC Bioinformatics. 2006 Feb 23;7:91. doi: 10.1186/1471-2105-7-91.
5
Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms.
Comput Methods Programs Biomed. 2011 Dec;104(3):443-51. doi: 10.1016/j.cmpb.2011.03.018. Epub 2011 Apr 30.
6
SVM and SVM Ensembles in Breast Cancer Prediction.
PLoS One. 2017 Jan 6;12(1):e0161501. doi: 10.1371/journal.pone.0161501. eCollection 2017.
7
A practical approach to model selection for support vector machines with a Gaussian kernel.
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):330-40. doi: 10.1109/TSMCB.2010.2053026. Epub 2010 Aug 9.
8
LESS: a model-based classifier for sparse subspaces.
IEEE Trans Pattern Anal Mach Intell. 2005 Sep;27(9):1496-500. doi: 10.1109/TPAMI.2005.182.
9
Boosting random subspace method.
Neural Netw. 2008 Nov;21(9):1344-62. doi: 10.1016/j.neunet.2007.12.046. Epub 2008 Jan 6.
10
HDEC: A Heterogeneous Dynamic Ensemble Classifier for Binary Datasets.
Comput Intell Neurosci. 2020 Dec 14;2020:8826914. doi: 10.1155/2020/8826914. eCollection 2020.

引用本文的文献

1
Artificial intelligence strengthenes cervical cancer screening - present and future.
Cancer Biol Med. 2024 Sep 19;21(10):864-79. doi: 10.20892/j.issn.2095-3941.2024.0198.
2
Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.
Comput Intell Neurosci. 2017;2017:3405463. doi: 10.1155/2017/3405463. Epub 2017 May 4.

本文引用的文献

1
An empirical study of different approaches for protein classification.
ScientificWorldJournal. 2014;2014:236717. doi: 10.1155/2014/236717. Epub 2014 Jun 15.
2
Segmentation of virus particle candidates in transmission electron microscopy images.
J Microsc. 2012 Feb;245(2):140-7. doi: 10.1111/j.1365-2818.2011.03556.x. Epub 2011 Oct 4.
3
Visual pattern mining in histology image collections using bag of features.
Artif Intell Med. 2011 Jun;52(2):91-106. doi: 10.1016/j.artmed.2011.04.010. Epub 2011 Jun 12.
4
Protein classification using texture descriptors extracted from the protein backbone image.
J Theor Biol. 2010 Jun 7;264(3):1024-32. doi: 10.1016/j.jtbi.2010.03.020. Epub 2010 Mar 20.
5
Enhanced local texture feature sets for face recognition under difficult lighting conditions.
IEEE Trans Image Process. 2010 Jun;19(6):1635-50. doi: 10.1109/TIP.2010.2042645. Epub 2010 Feb 17.
6
Classification of breast tissues using Moran's index and Geary's coefficient as texture signatures and SVM.
Comput Biol Med. 2009 Dec;39(12):1063-72. doi: 10.1016/j.compbiomed.2009.08.009. Epub 2009 Oct 1.
7
Fast automated cell phenotype image classification.
BMC Bioinformatics. 2007 Mar 30;8:110. doi: 10.1186/1471-2105-8-110.
8
A fast learning algorithm for deep belief nets.
Neural Comput. 2006 Jul;18(7):1527-54. doi: 10.1162/neco.2006.18.7.1527.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验