Nanni Loris, Brahnam Sheryl, Ghidoni Stefano, Lumini Alessandra
DEI, University of Padova, Via Gradenigo 6, 35131 Padova, Italy.
Computer Information Systems, Missouri State University, 901 S. National, Springfield, MO 65804, USA.
Comput Intell Neurosci. 2015;2015:909123. doi: 10.1155/2015/909123. Epub 2015 Aug 27.
We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset.
我们对25个数据集(14个图像数据集和11个UCI数据挖掘数据集)上不同分类方法的性能进行了广泛研究。目的是找到通用(GP)异构集成(几乎不需要参数调整),其在多个数据集上具有竞争力。本研究中考察的最先进分类器包括支持向量机、高斯过程分类器、adaboost的随机子空间、旋转增强的随机子空间和深度学习分类器。我们证明,基于不同分类器求和规则的简单融合的异构集成在所有25个数据集上都表现得很稳定。我们调查的最重要结果是表明,一些最新方法,包括我们在本文中提出的异构集成,即使在为每个数据集仔细调整内核选择和支持向量机参数的情况下,也能够优于支持向量机分类器(使用LibSVM实现)。