Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica. Consejo Nacional de Investigaciones Científicas y Técnicas. 8400 San Carlos de Bariloche, Río Negro, Argentina.
Nat Commun. 2017 May 26;8:15523. doi: 10.1038/ncomms15523.
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
能量耗散是与外部环境浴直接耦合的物理系统不可避免的现象。在振荡系统中,它会导致振荡幅度衰减。在需要稳定振荡的情况下,振动耗散的能量通常通过外部能源的补充来补偿。因此,如果去除外部能源供应,振荡幅度会立即开始衰减,因为没有办法恢复耗散的能量。在这里,我们展示了一种新的耗散工程策略,可以在不提供外部能量来补偿损失的情况下支持稳定的振荡。共振模式耦合的基本内在机制被用来在振动模式之间重新分配和存储机械能,并在外部激励关闭时将其相干地传递回主模式。为了实验验证这一现象,我们利用微机电振荡器的非线性动力学响应通过内部共振来耦合两种不同的振动模式。