Suppr超能文献

机电声子腔系统中非线性介导的数字化与放大

Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems.

作者信息

Miao Tongqiao, Zhou Xin, Wu Xuezhong, Li Qingsong, Hou Zhanqiang, Hu Xiaoping, Wang Zenghui, Xiao Dingbang

机构信息

College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China.

The Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073, Changsha, China.

出版信息

Nat Commun. 2022 Apr 29;13(1):2352. doi: 10.1038/s41467-022-29995-x.

Abstract

Electromechanical phonon-cavity systems are man-made micro-structures, in which vibrational energy can be coherently transferred between different degrees of freedom. In such devices, the energy transfer direction and coupling strength can be parametrically controlled, offering great opportunities for both fundamental studies and practical applications such as phonon manipulation and sensing. However, to date the investigation of such systems has largely been limited to linear vibrations, while their responses in the nonlinear regime remain yet to be explored. Here, we demonstrate nonlinear operation of electromechanical phonon-cavity systems, and show that the resonant response differs drastically from that in the linear regime. We further demonstrate that by controlling the parametric pump, one can achieve nonlinearity-mediated digitization and amplification in the frequency domain, which can be exploited to build high-performance MEMS sensing devices based on phonon-cavity systems. Our findings offer intriguing opportunities for creating frequency-shift-based sensors and transducers.

摘要

机电声子腔系统是人造微结构,其中振动能量可在不同自由度之间相干转移。在这类器件中,能量转移方向和耦合强度可通过参数进行控制,为基础研究以及诸如声子操控和传感等实际应用提供了巨大机遇。然而,迄今为止,对此类系统的研究很大程度上局限于线性振动,而它们在非线性 regime 中的响应仍有待探索。在此,我们展示了机电声子腔系统的非线性操作,并表明共振响应与线性 regime 中的响应截然不同。我们进一步证明,通过控制参数泵浦,可在频域中实现非线性介导的数字化和放大,这可用于构建基于声子腔系统的高性能微机电系统传感装置。我们的发现为创建基于频移的传感器和换能器提供了有趣的机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/772d/9054851/80c55ccc9769/41467_2022_29995_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验