Shi Xinguo, Lin Xin, Li Ling, Li Meizhen, Palenik Brian, Lin Senjie
State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
Scripps Institution of Oceanography, University of California, San Diego, CA, USA.
ISME J. 2017 Oct;11(10):2209-2218. doi: 10.1038/ismej.2017.81. Epub 2017 May 26.
Although gene regulation can occur at both transcriptional and epigenetic (microRNA) levels, combined transcriptomic and microRNAomic responses to environmental stress are still largely unexplored for marine plankton. Here, we conducted transcriptome and microRNAome sequencing for Prorocentrum donghaiense to understand the molecular mechanisms by which this dinoflagellate copes with phosphorus (P) deficiency. Under P-depleted conditions, G1/S specific cyclin gene was markedly downregulated, consistent with growth inhibition, and genes related to dissolved organic phosphorus (DOP) hydrolysis, carbon fixation, nitrate assimilation, glycolysis, and cellular motility were upregulated. The elevated expression of ATP-generating genes (for example, rhodopsin) and ATP-consuming genes suggests some metabolic reconfiguration towards accelerated ATP recycling under P deficiency. MicroRNAome sequencing revealed 17 microRNAs, potentially regulating 3268 protein-coding genes. Functional enrichment analysis of these microRNA-targeted genes predicted decreases in sulfatide (sulfolipid) catabolism under P deficiency. Strikingly, we detected a significant increase in sulfolipid sulfatide content (but not in sulphoquinovosyldiacylglycerol content) and its biosynthesis gene expression, indicating a different sulfolipid-substituting-phospholipid mechanism in this dinoflagellate than other phytoplankters studied previously. Taken together, our integrative transcriptomic and microRNAomic analyses show that enhanced DOP utilization, accelerated ATP cycling and repressed sulfolipid degradation constitute a comprehensive strategy to cope with P deficiency in a model dinoflagellate.
尽管基因调控可发生在转录水平和表观遗传(微小RNA)水平,但对于海洋浮游生物而言,转录组和微小RNA组对环境胁迫的联合响应在很大程度上仍未得到充分研究。在此,我们对东海原甲藻进行了转录组和微小RNA组测序,以了解这种甲藻应对磷(P)缺乏的分子机制。在缺磷条件下,G1/S特异性细胞周期蛋白基因显著下调,这与生长抑制一致,而与溶解有机磷(DOP)水解、碳固定、硝酸盐同化、糖酵解和细胞运动相关的基因上调。产生ATP的基因(如视紫红质)和消耗ATP的基因表达升高,表明在缺磷条件下,细胞发生了一些代谢重排,以加速ATP循环。微小RNA组测序揭示了17种微小RNA,它们可能调控3268个蛋白质编码基因。对这些微小RNA靶向基因的功能富集分析预测,缺磷条件下硫脂(硫代脂质)分解代谢减少。令人惊讶的是,我们检测到硫脂硫苷含量(而非磺基喹喔啉二酰甘油含量)及其生物合成基因表达显著增加,这表明该甲藻中存在一种与先前研究的其他浮游植物不同的硫脂替代磷脂机制。综上所述,我们的转录组和微小RNA组综合分析表明,增强的DOP利用、加速的ATP循环和受抑制的硫脂降解构成了一种模型甲藻应对缺磷的综合策略。