Suppr超能文献

氮限制对米氏凯伦藻转录组响应的影响

Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency.

机构信息

Fujian Engineering Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fujian 350116, China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.

Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fujian 350116, China.

出版信息

Harmful Algae. 2021 Mar;103:101977. doi: 10.1016/j.hal.2021.101977. Epub 2021 Jan 27.

Abstract

The availability of ambient N nutrient is often correlated with the occurrences of harmful algal bloom formed by certain dinoflagellates, making it important to understand how these species might be responding to such conditions. Here, transcriptome sequencing of Karenia mikimotoi was conducted to understand the underlying molecular mechanisms by which this dinoflagellate copes with nitrogen (N) deficiency. Transcriptomic analysis revealed 8802 unigenes (3.56%) that were differentially expressed with ≥ 2-fold change. Under N-depleted conditions, genes involved in glycolysis, fatty acid metabolism, and the tricarboxylic acid (TCA) cycle as well as lipid accumulation were significantly upregulated. The elevated expression of enzymes used in protein degradation and turnover suggests possible metabolic reconfiguration towards accelerated N recycling. Moreover, a significant increase in urea transporter was observed, indicating increased assimilation of organic nitrogen resources as an alternative in N-depleted cultures of K. mikimotoi. The down-regulated glutamate synthase genes were also identified under N deficiency, suggesting suppression of primary amino acid synthesis to save N resource. Taken together, results of this study show enhanced multiple N resource acquisition and reuse of multiple N resources constitute a comprehensive strategy to cope with N deficiency in a dinoflagellate.

摘要

环境中 N 营养物质的可用性通常与某些甲藻形成的有害藻华的发生有关,因此了解这些物种可能对这些条件做出何种反应非常重要。在这里,对米氏凯伦藻进行了转录组测序,以了解该甲藻应对氮 (N) 缺乏的潜在分子机制。转录组分析显示,有 8802 个基因(占 3.56%)的表达差异≥ 2 倍。在 N 缺乏的条件下,糖酵解、脂肪酸代谢和三羧酸 (TCA) 循环以及脂类积累相关的基因显著上调。参与蛋白质降解和周转的酶的表达升高表明可能向加速 N 循环的方向进行代谢重排。此外,还观察到尿素转运体显著增加,表明在 K. mikimotoi 的 N 缺乏培养物中,增加了对有机氮源的同化作为替代物。在 N 缺乏下,谷氨酸合酶基因也被下调,表明抑制了初级氨基酸的合成以节省 N 资源。总之,这项研究的结果表明,增强多种 N 资源的获取和再利用以及多种 N 资源的重复利用构成了应对甲藻 N 缺乏的综合策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验