Department of Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Alcalá de Henares 28805, Madrid, Spain.
Department of Teoría de la Señal y Comunicaciones, Universidad Rey Juan Carlos, Fuenlabrada 28943, Madrid, Spain.
Comput Methods Programs Biomed. 2017 Jul;145:147-155. doi: 10.1016/j.cmpb.2017.04.005. Epub 2017 Apr 25.
T-wave alternans (TWA) is a fluctuation of the ST-T complex occurring on an every-other-beat basis of the surface electrocardiogram (ECG). It has been shown to be an informative risk stratifier for sudden cardiac death, though the lack of gold standard to benchmark detection methods has promoted the use of synthetic signals. This work proposes a novel signal model to study the performance of a TWA detection. Additionally, the methodological validation of a denoising technique based on empirical mode decomposition (EMD), which is used here along with the spectral method, is also tackled.
The proposed test bed system is based on the following guidelines: (1) use of open source databases to enable experimental replication; (2) use of real ECG signals and physiological noise; (3) inclusion of randomized TWA episodes. Both sensitivity (Se) and specificity (Sp) are separately analyzed. Also a nonparametric hypothesis test, based on Bootstrap resampling, is used to determine whether the presence of the EMD block actually improves the performance.
The results show an outstanding specificity when the EMD block is used, even in very noisy conditions (0.96 compared to 0.72 for SNR = 8 dB), being always superior than that of the conventional SM alone. Regarding the sensitivity, using the EMD method also outperforms in noisy conditions (0.57 compared to 0.46 for SNR=8 dB), while it decreases in noiseless conditions.
The proposed test setting designed to analyze the performance guarantees that the actual physiological variability of the cardiac system is reproduced. The use of the EMD-based block in noisy environment enables the identification of most patients with fatal arrhythmias.
T 波交替(TWA)是体表心电图(ECG)每隔一个搏动出现的 ST-T 复合波波动。它已被证明是一种有用的心脏性猝死风险分层指标,但由于缺乏黄金标准来基准检测方法,因此促进了合成信号的使用。这项工作提出了一种新的信号模型来研究 TWA 检测的性能。此外,还解决了基于经验模态分解(EMD)的去噪技术的方法学验证,该技术与光谱法一起在此使用。
所提出的测试平台系统基于以下准则:(1)使用开源数据库以实现实验复制;(2)使用真实的 ECG 信号和生理噪声;(3)包括随机 TWA 发作。分别分析灵敏度(Se)和特异性(Sp)。还使用基于 Bootstrap 重采样的非参数假设检验来确定 EMD 块的存在是否确实可以提高性能。
结果表明,即使在非常嘈杂的条件下(SNR=8dB 时为 0.96,而 SNR=8dB 时为 0.72),使用 EMD 块时特异性非常出色,并且始终优于传统的 SM 单独使用。关于敏感性,在嘈杂的条件下,使用 EMD 方法也优于(SNR=8dB 时为 0.57,而 SNR=8dB 时为 0.46),而在无噪声的条件下则下降。
所提出的测试设置旨在分析性能,可确保重现心脏系统的实际生理变异性。在嘈杂环境中使用基于 EMD 的块可以识别出大多数患有致命性心律失常的患者。