Division of Cardiology, University Health Network, Toronto, Ontario, Canada.
Med Eng Phys. 2011 Jul;33(6):700-11. doi: 10.1016/j.medengphy.2011.01.007. Epub 2011 Feb 18.
Each year 400,000 North Americans die from sudden cardiac death (SCD). Identifying those patients at risk of SCD remains a formidable challenge. T wave alternans (TWA) evaluation is emerging as an important tool to risk stratify patients with heart diseases. TWA is a heart rate dependent phenomenon that manifests on the surface electrocardiogram (ECG) as a change in the shape or amplitude of the T wave every second heart beat. The presence of large magnitude TWA often presages lethal ventricular arrhythmias. Because the TWA signal is typically in the microvolt range, accurate detection algorithms are required to control for confounding noise and changing physiological conditions (i.e. data nonstationarity). In this study, we address the limitations of two common TWA estimation methods, spectral method (SM) and modified moving average (MMA). To overcome their limitations, we propose a modified TWA quantification framework, called Adaptive SM, that uses non-linear time-frequency distribution (TFD). In order to increase the robustness of TWA detection in ambulatory ECGs, we also propose a new technique, called non-negative matrix factorization (NMF)-Adaptive SM. We present the analytical background of these methods, and evaluate their accuracy in detecting synthetic TWA signal in simulated and real-world ambulatory ECG recordings under conditions of noise and data non-stationarity. The results of the numerical simulations support the effectiveness of the proposed approaches for TWA analysis, which may ultimately improve SCD risk assessment.
每年有 40 万北美居民死于心源性猝死(SCD)。识别 SCD 高危患者仍然是一个艰巨的挑战。T 波交替(TWA)评估正成为一种重要的工具,用于对患有心脏病的患者进行风险分层。TWA 是一种依赖心率的现象,在体表心电图(ECG)上表现为每秒钟 T 波形状或幅度的变化。大振幅 TWA 的存在常常预示着致命性室性心律失常。由于 TWA 信号通常处于微伏范围内,因此需要准确的检测算法来控制混杂噪声和变化的生理条件(即数据非平稳性)。在这项研究中,我们解决了两种常见的 TWA 估计方法,即频谱法(SM)和修正移动平均法(MMA)的局限性。为了克服它们的局限性,我们提出了一种称为自适应 SM 的改进 TWA 量化框架,该框架使用非线性时频分布(TFD)。为了提高动态心电图中 TWA 检测的稳健性,我们还提出了一种称为非负矩阵分解(NMF)-自适应 SM 的新技术。我们介绍了这些方法的分析背景,并在噪声和数据非平稳条件下,评估了它们在模拟和真实世界动态心电图记录中检测合成 TWA 信号的准确性。数值模拟的结果支持了所提出的 TWA 分析方法的有效性,这可能最终改善 SCD 风险评估。