Suppr超能文献

力觉感受器对肌肉协同作用的影响与其反应特性相关。

Effects of force detecting sense organs on muscle synergies are correlated with their response properties.

作者信息

Zill Sasha N, Neff David, Chaudhry Sumaiya, Exter Annelie, Schmitz Josef, Büschges Ansgar

机构信息

Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.

Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25704, USA.

出版信息

Arthropod Struct Dev. 2017 Jul;46(4):564-578. doi: 10.1016/j.asd.2017.05.004. Epub 2017 Jul 4.

Abstract

Sense organs that monitor forces in legs can contribute to activation of muscles as synergist groups. Previous studies in cockroaches and stick insects showed that campaniform sensilla, receptors that encode forces via exoskeletal strains, enhance muscle synergies in substrate grip. However synergist activation was mediated by different groups of receptors in cockroaches (trochanteral sensilla) and stick insects (femoral sensilla). The factors underlying the differential effects are unclear as the responses of femoral campaniform sensilla have not previously been characterized. The present study characterized the structure and response properties (via extracellular recording) of the femoral sensilla in both insects. The cockroach trochantero-femoral (TrF) joint is mobile and the joint membrane acts as an elastic antagonist to the reductor muscle. Cockroach femoral campaniform sensilla show weak discharges to forces in the coxo-trochanteral (CTr) joint plane (in which forces are generated by coxal muscles) but instead encode forces directed posteriorly (TrF joint plane). In stick insects, the TrF joint is fused and femoral campaniform sensilla discharge both to forces directed posteriorly and forces in the CTr joint plane. These findings support the idea that receptors that enhance synergies encode forces in the plane of action of leg muscles used in support and propulsion.

摘要

监测腿部力量的感觉器官可作为协同肌群促进肌肉激活。先前对蟑螂和竹节虫的研究表明,钟形感器(通过外骨骼应变编码力量的感受器)可增强在抓握底物时的肌肉协同作用。然而,蟑螂(转节感器)和竹节虫(股节感器)中协同肌的激活是由不同组的感受器介导的。由于此前尚未对股节钟形感器的反应进行表征,所以这种差异效应背后的因素尚不清楚。本研究对两种昆虫的股节感器的结构和反应特性(通过细胞外记录)进行了表征。蟑螂的转节 - 股节(TrF)关节可活动,关节膜作为屈肌的弹性拮抗物。蟑螂的股节钟形感器对基节 - 转节(CTr)关节平面(由基节肌肉产生力量的平面)内的力量放电较弱,而是对向后的力量(TrF关节平面)进行编码。在竹节虫中,TrF关节融合,股节钟形感器对向后的力量和CTr关节平面内的力量都会放电。这些发现支持了这样一种观点,即增强协同作用的感受器在用于支撑和推进的腿部肌肉的作用平面内编码力量。

相似文献

1
Effects of force detecting sense organs on muscle synergies are correlated with their response properties.
Arthropod Struct Dev. 2017 Jul;46(4):564-578. doi: 10.1016/j.asd.2017.05.004. Epub 2017 Jul 4.
2
Force feedback reinforces muscle synergies in insect legs.
Arthropod Struct Dev. 2015 Nov;44(6 Pt A):541-53. doi: 10.1016/j.asd.2015.07.001. Epub 2015 Jul 17.
3
Force encoding in stick insect legs delineates a reference frame for motor control.
J Neurophysiol. 2012 Sep;108(5):1453-72. doi: 10.1152/jn.00274.2012. Epub 2012 Jun 6.
4
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
J Neurophysiol. 2018 Oct 1;120(4):1807-1823. doi: 10.1152/jn.00371.2018. Epub 2018 Jul 18.
6
Sensing the effect of body load in legs: responses of tibial campaniform sensilla to forces applied to the thorax in freely standing cockroaches.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004 Mar;190(3):201-15. doi: 10.1007/s00359-003-0487-y. Epub 2004 Jan 16.
7
Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Aug;197(8):851-67. doi: 10.1007/s00359-011-0647-4. Epub 2011 May 5.
8
Mechanosensory encoding of forces in walking uphill and downhill: force feedback can stabilize leg movements in stick insects.
J Neurophysiol. 2024 Feb 1;131(2):198-215. doi: 10.1152/jn.00414.2023. Epub 2024 Jan 3.
9
Positive force feedback in development of substrate grip in the stick insect tarsus.
Arthropod Struct Dev. 2014 Sep;43(5):441-55. doi: 10.1016/j.asd.2014.06.002. Epub 2014 Jun 18.
10
Load signalling by cockroach trochanteral campaniform sensilla.
Brain Res. 1999 Mar 20;822(1-2):271-5. doi: 10.1016/s0006-8993(99)01156-7.

引用本文的文献

1
Snow flies self-amputate freezing limbs to sustain behavior at sub-zero temperatures.
Curr Biol. 2023 Nov 6;33(21):4549-4556.e3. doi: 10.1016/j.cub.2023.09.002. Epub 2023 Sep 26.
2
Thorax-Segment- and Leg-Segment-Specific Motor Control for Adaptive Behavior.
Front Physiol. 2022 May 4;13:883858. doi: 10.3389/fphys.2022.883858. eCollection 2022.
3
NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster.
Nat Methods. 2022 May;19(5):620-627. doi: 10.1038/s41592-022-01466-7. Epub 2022 May 11.
4
Ultra high-resolution biomechanics suggest that substructures within insect mechanosensors decisively affect their sensitivity.
J R Soc Interface. 2022 May;19(190):20220102. doi: 10.1098/rsif.2022.0102. Epub 2022 May 4.
5
Integrative Biomimetics of Autonomous Hexapedal Locomotion.
Front Neurorobot. 2019 Oct 23;13:88. doi: 10.3389/fnbot.2019.00088. eCollection 2019.
6
Identification of the origin of force-feedback signals influencing motor neurons of the thoraco-coxal joint in an insect.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Apr;205(2):253-270. doi: 10.1007/s00359-019-01334-4. Epub 2019 Apr 11.
7
Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli.
J Neurophysiol. 2018 Oct 1;120(4):1807-1823. doi: 10.1152/jn.00371.2018. Epub 2018 Jul 18.
8
A load-based mechanism for inter-leg coordination in insects.
Proc Biol Sci. 2017 Dec 13;284(1868). doi: 10.1098/rspb.2017.1755.

本文引用的文献

1
2
(How) do animals know how much they weigh?
J Exp Biol. 2016 May 1;219(Pt 9):1275-82. doi: 10.1242/jeb.120410.
3
Structure and function of the elastic organ in the tibia of a tenebrionid beetle.
Naturwissenschaften. 2016 Jun;103(5-6):41. doi: 10.1007/s00114-016-1363-2. Epub 2016 Apr 27.
4
Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception.
J Exp Biol. 2016 Jun 1;219(Pt 11):1760-71. doi: 10.1242/jeb.133652. Epub 2016 Mar 18.
6
Neuromechanical model of praying mantis explores the role of descending commands in pre-strike pivots.
Bioinspir Biomim. 2015 Nov 18;10(6):065005. doi: 10.1088/1748-3190/10/6/065005.
7
Motor Neuron Pools of Synergistic Thigh Muscles Share Most of Their Synaptic Input.
J Neurosci. 2015 Sep 2;35(35):12207-16. doi: 10.1523/JNEUROSCI.0240-15.2015.
8
Force feedback reinforces muscle synergies in insect legs.
Arthropod Struct Dev. 2015 Nov;44(6 Pt A):541-53. doi: 10.1016/j.asd.2015.07.001. Epub 2015 Jul 17.
9
The role of leg touchdown for the control of locomotor activity in the walking stick insect.
J Neurophysiol. 2015 Apr 1;113(7):2309-20. doi: 10.1152/jn.00956.2014. Epub 2015 Feb 4.
10
A novel computational framework for deducing muscle synergies from experimental joint moments.
Front Comput Neurosci. 2014 Dec 3;8:153. doi: 10.3389/fncom.2014.00153. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验