Suppr超能文献

卟啉在光医学中的新兴应用。

Emerging applications of porphyrins in photomedicine.

作者信息

Huang Haoyuan, Song Wentao, Rieffel James, Lovell Jonathan F

机构信息

Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA.

出版信息

Front Phys. 2015 Apr;3. doi: 10.3389/fphy.2015.00023. Epub 2015 Apr 10.

Abstract

Biomedical applications of porphyrins and related molecules have been extensively pursued in the context of photodynamic therapy. Recent advances in nanoscale engineering have opened the door for new ways that porphyrins stand to potentially benefit human health. Metalloporphyrins are inherently suitable for many types of medical imaging and therapy. Traditional nanocarriers such as liposomes, dendrimers and silica nanoparticles have been explored for photosensitizer delivery. Concurrently, entirely new classes of porphyrin nanostructures are being developed, such as smart materials that are activated by specific biochemicals encountered at disease sites. Techniques have been developed that improve treatments by combining biomaterials with photosensitizers and functional moieties such as peptides, DNA and antibodies. Compared to simpler structures, these more complex and functional designs can potentially decrease side effects and lead to safer and more efficient phototherapies. This review examines recent research on porphyrin-derived materials in multimodal imaging, drug delivery, bio-sensing, phototherapy and probe design, demonstrating their bright future for biomedical applications.

摘要

在光动力疗法的背景下,卟啉及相关分子的生物医学应用已得到广泛研究。纳米尺度工程学的最新进展为卟啉可能有益于人类健康的新方式打开了大门。金属卟啉本质上适用于多种医学成像和治疗。传统的纳米载体,如脂质体、树枝状大分子和二氧化硅纳米颗粒,已被用于探索光敏剂递送。与此同时,全新的卟啉纳米结构类别正在被开发,例如可被疾病部位特定生物化学物质激活的智能材料。已经开发出了通过将生物材料与光敏剂以及诸如肽、DNA和抗体等功能部分相结合来改善治疗的技术。与更简单的结构相比,这些更复杂且功能化的设计有可能减少副作用,并带来更安全、更有效的光疗法。本综述考察了卟啉衍生材料在多模态成像、药物递送、生物传感、光疗和探针设计方面的最新研究,展示了它们在生物医学应用方面的光明前景。

相似文献

1
Emerging applications of porphyrins in photomedicine.
Front Phys. 2015 Apr;3. doi: 10.3389/fphy.2015.00023. Epub 2015 Apr 10.
3
Rational Design of Photosynthesis-Inspired Nanomedicines.
Acc Chem Res. 2019 May 21;52(5):1265-1274. doi: 10.1021/acs.accounts.9b00104. Epub 2019 Apr 25.
4
Photomedicine based on heme-derived compounds.
Adv Drug Deliv Rev. 2022 Mar;182:114134. doi: 10.1016/j.addr.2022.114134. Epub 2022 Feb 3.
6
Liposomal nanostructures for photosensitizer delivery.
Lasers Surg Med. 2011 Sep;43(7):734-48. doi: 10.1002/lsm.21101.
7
Porphyrin colorimetric indicators in molecular and nano-architectures.
J Nanosci Nanotechnol. 2007 Sep;7(9):2969-93. doi: 10.1166/jnn.2007.910.
8
Interactions of porphyrins with DNA: A review focusing recent advances in chemical modifications on porphyrins as artificial nucleases.
J Inorg Biochem. 2021 Jun;219:111434. doi: 10.1016/j.jinorgbio.2021.111434. Epub 2021 Mar 23.
9
Structural Investigations, Cellular Imaging, and Radiolabeling of Neutral, Polycationic, and Polyanionic Functional Metalloporphyrin Conjugates.
Bioconjug Chem. 2021 Jul 21;32(7):1374-1392. doi: 10.1021/acs.bioconjchem.0c00691. Epub 2021 Feb 1.

引用本文的文献

3
Porphyrins as Chiroptical Conformational Probes for Biomolecules.
Molecules. 2025 Mar 28;30(7):1512. doi: 10.3390/molecules30071512.
4
The role of corroles in modern cancer therapy: innovation and prospects.
Biometals. 2025 Apr 23. doi: 10.1007/s10534-025-00687-5.
5
Open-Chain Tetrapyrroles Meet Metal Ions in the Functional Molecular Material Science.
Chempluschem. 2025 Jun;90(6):e202500090. doi: 10.1002/cplu.202500090. Epub 2025 Apr 6.
7
8
Orientational Effects and Molecular-Scale Thermoelectricity Control.
ACS Omega. 2024 Jun 26;9(27):29537-29543. doi: 10.1021/acsomega.4c02141. eCollection 2024 Jul 9.
10
Biophysical control of plasticity and patterning in regeneration and cancer.
Cell Mol Life Sci. 2023 Dec 15;81(1):9. doi: 10.1007/s00018-023-05054-6.

本文引用的文献

1
Dye Sensitizers for Photodynamic Therapy.
Materials (Basel). 2013 Mar 6;6(3):817-840. doi: 10.3390/ma6030817.
2
Nano-enabled SERS reporting photosensitizers.
Theranostics. 2015 Feb 6;5(5):469-76. doi: 10.7150/thno.10694. eCollection 2015.
3
Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles.
Adv Mater. 2015 Mar 11;27(10):1785-90. doi: 10.1002/adma.201404739. Epub 2015 Jan 14.
4
Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications.
Org Biomol Chem. 2015 Mar 7;13(9):2518-29. doi: 10.1039/c4ob02334j.
5
Nanoparticles in photodynamic therapy.
Chem Rev. 2015 Feb 25;115(4):1990-2042. doi: 10.1021/cr5004198. Epub 2015 Jan 20.
6
Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer.
Mol Cancer Ther. 2015 Jan;14(1):141-50. doi: 10.1158/1535-7163.MCT-14-0658. Epub 2014 Nov 21.
7
Nanomedical engineering: shaping future nanomedicines.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Mar-Apr;7(2):169-88. doi: 10.1002/wnan.1315. Epub 2014 Nov 6.
8
Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy.
Adv Mater. 2014 Dec 3;26(45):7643-8. doi: 10.1002/adma.201403415. Epub 2014 Oct 17.
9
Functional nanomaterials for phototherapies of cancer.
Chem Rev. 2014 Nov 12;114(21):10869-939. doi: 10.1021/cr400532z. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验