Suppr超能文献

关于预测非编码 RNA 的最新计算方法的综述

A Review on Recent Computational Methods for Predicting Noncoding RNAs.

机构信息

Department of Mathematics and Information Retrieval of Library and Hebei Laboratory of Pharmaceutic Molecular Chemistry, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China.

College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.

出版信息

Biomed Res Int. 2017;2017:9139504. doi: 10.1155/2017/9139504. Epub 2017 May 3.

Abstract

Noncoding RNAs (ncRNAs) play important roles in various cellular activities and diseases. In this paper, we presented a comprehensive review on computational methods for ncRNA prediction, which are generally grouped into four categories: (1) homology-based methods, that is, comparative methods involving evolutionarily conserved RNA sequences and structures, (2) de novo methods using RNA sequence and structure features, (3) transcriptional sequencing and assembling based methods, that is, methods designed for single and pair-ended reads generated from next-generation RNA sequencing, and (4) RNA family specific methods, for example, methods specific for microRNAs and long noncoding RNAs. In the end, we summarized the advantages and limitations of these methods and pointed out a few possible future directions for ncRNA prediction. In conclusion, many computational methods have been demonstrated to be effective in predicting ncRNAs for further experimental validation. They are critical in reducing the huge number of potential ncRNAs and pointing the community to high confidence candidates. In the future, high efficient mapping technology and more intrinsic sequence features (e.g., motif and -mer frequencies) and structure features (e.g., minimum free energy, conserved stem-loop, or graph structures) are suggested to be combined with the next- and third-generation sequencing platforms to improve ncRNA prediction.

摘要

非编码 RNA(ncRNA)在各种细胞活动和疾病中发挥着重要作用。本文对 ncRNA 预测的计算方法进行了全面综述,这些方法通常分为四类:(1)基于同源性的方法,即涉及进化保守 RNA 序列和结构的比较方法,(2)基于 RNA 序列和结构特征的从头预测方法,(3)基于转录测序和组装的方法,即针对来自下一代 RNA 测序的单端和双端reads 设计的方法,(4)RNA 家族特异性方法,例如针对 microRNAs 和长非编码 RNA 的方法。最后,我们总结了这些方法的优缺点,并指出了 ncRNA 预测的一些可能的未来方向。总之,许多计算方法已被证明可有效地预测 ncRNA,以进行进一步的实验验证。它们对于减少大量潜在的 ncRNA 并为研究人员提供高可信度的候选物至关重要。未来,建议将高效的映射技术和更多内在的序列特征(例如,基序和 -mer 频率)和结构特征(例如,最小自由能、保守茎环或图形结构)与下一代和第三代测序平台相结合,以提高 ncRNA 的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验