Lan Freeman, Demaree Benjamin, Ahmed Noorsher, Abate Adam R
Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biosciences, University of California, San Francisco, California, USA.
UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California, USA.
Nat Biotechnol. 2017 Jul;35(7):640-646. doi: 10.1038/nbt.3880. Epub 2017 May 29.
The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.
单细胞基因组测序在应用于大型细胞群体时,受到基因组制备过程中分离单细胞的技术挑战的阻碍。在此,我们介绍单细胞基因组测序(SiC-seq),它利用液滴微流控技术来分离、片段化和标记单细胞的基因组,随后对混合的DNA进行Illumina测序。我们展示了在革兰氏阴性菌、革兰氏阳性菌和真菌的合成群落中,每次运行可对超过50,000个细胞进行超高通量测序。测序得到的基因组可根据特征序列在计算机上进行分类。我们使用这种方法来分析来自环境样本的微生物群落中抗生素抗性基因、毒力因子和噬菌体序列的分布。对大量单细胞进行常规测序的能力将使我们能够解析不同细胞群体中的遗传异质性。