Suppr超能文献

相似文献

1
Applying Quantitative CT Image Feature Analysis to Predict Response of Ovarian Cancer Patients to Chemotherapy.
Acad Radiol. 2017 Oct;24(10):1233-1239. doi: 10.1016/j.acra.2017.04.014. Epub 2017 May 26.
2
Early prediction of clinical benefit of treating ovarian cancer using quantitative CT image feature analysis.
Acta Radiol. 2016 Sep;57(9):1149-55. doi: 10.1177/0284185115620947. Epub 2015 Dec 11.
5
A New Approach to Evaluate Drug Treatment Response of Ovarian Cancer Patients Based on Deformable Image Registration.
IEEE Trans Med Imaging. 2016 Jan;35(1):316-25. doi: 10.1109/TMI.2015.2473823. Epub 2015 Aug 27.

引用本文的文献

1
Quantitative and qualitative metrics of tumor stroma in predicting ovarian cancer outcomes and expansion of its study with AI-based tools.
Mol Ther Oncol. 2025 May 24;33(2):201001. doi: 10.1016/j.omton.2025.201001. eCollection 2025 Jun 18.
4
Evaluating the Effectiveness of 2D and 3D CT Image Features for Predicting Tumor Response to Chemotherapy.
Bioengineering (Basel). 2023 Nov 20;10(11):1334. doi: 10.3390/bioengineering10111334.
5
Radiomics in the evaluation of ovarian masses - a systematic review.
Insights Imaging. 2023 Oct 2;14(1):165. doi: 10.1186/s13244-023-01500-y.
6
CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features.
Quant Imaging Med Surg. 2023 Aug 1;13(8):5218-5229. doi: 10.21037/qims-22-1135. Epub 2023 Jun 13.
8
A Comparison of Computer-Aided Diagnosis Schemes Optimized Using Radiomics and Deep Transfer Learning Methods.
Bioengineering (Basel). 2022 Jun 15;9(6):256. doi: 10.3390/bioengineering9060256.
10
Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms.
J Oncol. 2021 Oct 11;2021:8615450. doi: 10.1155/2021/8615450. eCollection 2021.

本文引用的文献

1
A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.
Comput Methods Programs Biomed. 2017 Jun;144:97-104. doi: 10.1016/j.cmpb.2017.03.017. Epub 2017 Mar 21.
4
Applying a new quantitative global breast MRI feature analysis scheme to assess tumor response to chemotherapy.
J Magn Reson Imaging. 2016 Nov;44(5):1099-1106. doi: 10.1002/jmri.25276. Epub 2016 Apr 15.
5
Cancer statistics, 2016.
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.
6
MR imaging of ovarian masses: classification and differential diagnosis.
Insights Imaging. 2016 Feb;7(1):21-41. doi: 10.1007/s13244-015-0455-4. Epub 2015 Dec 16.
7
Early prediction of clinical benefit of treating ovarian cancer using quantitative CT image feature analysis.
Acta Radiol. 2016 Sep;57(9):1149-55. doi: 10.1177/0284185115620947. Epub 2015 Dec 11.
8
A New Approach to Evaluate Drug Treatment Response of Ovarian Cancer Patients Based on Deformable Image Registration.
IEEE Trans Med Imaging. 2016 Jan;35(1):316-25. doi: 10.1109/TMI.2015.2473823. Epub 2015 Aug 27.
9
Pitfalls in RECIST Data Extraction for Clinical Trials: Beyond the Basics.
Acad Radiol. 2015 Jun;22(6):779-86. doi: 10.1016/j.acra.2015.01.015. Epub 2015 Mar 18.
10
A new initiative on precision medicine.
N Engl J Med. 2015 Feb 26;372(9):793-5. doi: 10.1056/NEJMp1500523. Epub 2015 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验