School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA.
UT Southwestern Medical Center, Dallas, TX, USA.
J Xray Sci Technol. 2022;30(3):459-475. doi: 10.3233/XST-221138.
Endovascular mechanical thrombectomy (EMT) is an effective method to treat acute ischemic stroke (AIS) patients due to large vessel occlusion (LVO). However, stratifying AIS patients who can and cannot benefit from EMT remains a clinical challenge.
To develop a new quantitative image marker computed from pre-intervention computed tomography perfusion (CTP) images and evaluate its feasibility to predict clinical outcome among AIS patients undergoing EMT after diagnosis of LVO.
A retrospective dataset of 31 AIS patients with pre-intervention CTP images is assembled. A computer-aided detection (CAD) scheme is developed to pre-process CTP images of different scanning series for each study case, perform image segmentation, quantify contrast-enhanced blood volumes in bilateral cerebral hemispheres, and compute features related to asymmetrical cerebral blood flow patterns based on the cumulative cerebral blood flow curves of two hemispheres. Next, image markers based on a single optimal feature and machine learning (ML) models fused with multi-features are developed and tested to classify AIS cases into two classes of good and poor prognosis based on the Modified Rankin Scale. Performance of image markers is evaluated using the area under the ROC curve (AUC) and accuracy computed from the confusion matrix.
The ML model using the neuroimaging features computed from the slopes of the subtracted cumulative blood flow curves between two cerebral hemispheres yields classification performance of AUC = 0.878±0.077 with an overall accuracy of 90.3%.
This study demonstrates feasibility of developing a new quantitative imaging method and marker to predict AIS patients' prognosis in the hyperacute stage, which can help clinicians optimally treat and manage AIS patients.
血管内机械血栓切除术(EMT)是治疗因大血管闭塞(LVO)引起的急性缺血性脑卒中(AIS)患者的有效方法。然而,如何对能够从 EMT 中获益和不能获益的 AIS 患者进行分层仍然是一个临床挑战。
从发病后 LVO 的 AIS 患者的介入前 CT 灌注(CTP)图像中计算出新的定量图像标志物,并评估其预测 EMT 后临床结局的可行性。
收集了 31 例 AIS 患者的回顾性数据集,这些患者具有介入前 CTP 图像。开发了一种计算机辅助检测(CAD)方案,用于对每个研究病例的不同扫描序列的 CTP 图像进行预处理,执行图像分割,量化双侧大脑半球的对比增强血容量,并根据两个半球的累积脑血流曲线计算与不对称脑血流模式相关的特征。接下来,基于单最佳特征和融合多特征的机器学习(ML)模型开发和测试图像标志物,根据改良的 Rankin 量表将 AIS 病例分为预后良好和预后不良两类。使用 ROC 曲线下面积(AUC)和混淆矩阵计算的准确性评估图像标志物的性能。
使用两个大脑半球之间的减去累积血流曲线斜率计算的神经影像学特征的 ML 模型的分类性能 AUC 为 0.878±0.077,总准确率为 90.3%。
本研究证明了开发新的定量成像方法和标志物来预测 AIS 患者超急性期预后的可行性,这有助于临床医生对 AIS 患者进行最佳治疗和管理。