Inan Damla, Dubey Rajeev K, Westerveld Nick, Bleeker Jorrit, Jager Wolter F, Grozema Ferdinand C
Laboratory of Optoelectronic Materials and ‡Laboratory of Organic Materials & Interfaces Department of Chemical Engineering, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
J Phys Chem A. 2017 Jun 22;121(24):4633-4644. doi: 10.1021/acs.jpca.7b03806. Epub 2017 Jun 14.
We report here the synthesis and photophysical study of a series of electron donor-acceptor molecules, in which electron-donating 4-methoxyphenoxy groups are attached to the 1,7-bay positions of four different perylene tetracarboxylic acid derivatives, namely, perylene tetraesters 1, perylene monoimide diesters 2, perylene bisimides 3, and perylene monobenzimidazole monoimides 4. These perylene derivatives are used because of their increasing order of electron-accepting capability upon moving from 1 to 4. Two additional donor-acceptor molecules are synthesized by linking electron-donating 4-methoxyphenyl groups to the imide position of perylene monoimide diester 2 and perylene bisimide 3. The motivation for this study is to achieve a good control over the photoinduced charge-transfer (CT) process in perylene-based systems by altering the position of electron donors and tuning the electron deficiency of perylene core. A comprehensive study of the photophysical properties of these molecules has shown a highly systematic trend in the magnitude of CT as a function of increased electron deficiency of the perylene core and solvent polarity. Importantly, just by changing the attachment of electron-donating group from "bay" to "imide" position, we are able to block the CT process. This implies that the positioning of the electron donor at the perylene core strongly influences the kinetics of the photoinduced CT process. In these compounds, the CT process is characterized by the quenching of fluorescence and singlet excited-state lifetimes as compared to model compounds bearing non-electron-donating 4-tert-butylphenoxy groups. Transient absorption spectroscopy did not reveal spectra of CT states. This most likely implies that the CT state is not accumulated, because of the faster charge recombination.
我们在此报告了一系列电子供体-受体分子的合成及光物理研究,其中供电子的4-甲氧基苯氧基连接在四种不同苝四羧酸衍生物的1,7-位,即苝四酯1、苝单酰亚胺二酯2、苝双酰亚胺3和苝单苯并咪唑单酰亚胺4。使用这些苝衍生物是因为从1到4其吸电子能力呈递增顺序。通过将供电子的4-甲氧基苯基连接到苝单酰亚胺二酯2和苝双酰亚胺3的酰亚胺位置,还合成了另外两种供体-受体分子。本研究的目的是通过改变电子供体的位置并调节苝核的缺电子程度,实现对苝基体系中光诱导电荷转移(CT)过程的良好控制。对这些分子光物理性质的全面研究表明,CT的大小呈现出高度系统的趋势,它是苝核缺电子程度增加和溶剂极性的函数。重要的是,仅仅通过将供电子基团的连接位置从“位”变为“酰亚胺”位置,我们就能阻断CT过程。这意味着电子供体在苝核上的定位强烈影响光诱导CT过程的动力学。在这些化合物中,与带有非供电子4-叔丁基苯氧基的模型化合物相比,CT过程的特征是荧光猝灭和单线态激发态寿命缩短。瞬态吸收光谱未揭示CT态的光谱。这很可能意味着由于电荷复合更快,CT态没有积累。