Dubey Rajeev K, Inan Damla, Sengupta Sanchita, Sudhölter Ernst J R, Grozema Ferdinand C, Jager Wolter F
Laboratory of Organic Materials & Interfaces , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands . Email:
Laboratory of Optoelectronic Materials , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands.
Chem Sci. 2016 Jun 1;7(6):3517-3532. doi: 10.1039/c6sc00386a. Epub 2016 Mar 15.
We report the synthesis and excited-state dynamics of a series of five bichromophoric light-harvesting antenna systems, which are capable of efficient harvesting of solar energy in the spectral range of 350-580 nm. These antenna systems have been synthesized in a modular fashion by the covalent attachment of blue light absorbing naphthalene monoimide energy donors (, , and ) to green light absorbing perylene-3,4,9,10-tetracarboxylic acid derived energy acceptors, 1,7-perylene-3,4,9,10-tetracarboxylic tetrabutylester (), 1,7-perylene-3,4,9,10-tetracarboxylic monoimide dibutylester (), and 1,7-perylene-3,4,9,10-tetracarboxylic bisimide (). The energy donors have been linked at the 1,7-bay-positions of the perylene derivatives, thus leaving the positions free for further functionalization and device construction. A highly stable and rigid structure, with no electronic communication between the donor and acceptor components, has been realized an all-aromatic non-conjugated phenoxy spacer between the constituent chromophores. The selection of donor naphthalene derivatives for attachment with perylene derivatives was based on the effective matching of their respective optical properties to achieve efficient excitation energy transfer (EET) by the Förster mechanism. A comprehensive study of the excited-state dynamics, in toluene, revealed quantitative and ultrafast ( 1 ps) intramolecular EET from donor naphthalene chromophores to the acceptor perylenes in all the studied systems. Electron transfer from the donor naphthalene chromophores to the acceptor perylenes has not been observed, not even for antenna systems in which this process is thermodynamically allowed. Due to the combination of an efficient and fast energy transfer along with broad absorption in the visible region, these antenna systems are promising materials for solar-to-electric and solar-to-fuel devices.
我们报道了一系列由五个双发色团光捕获天线系统组成的合成及激发态动力学,这些系统能够在350 - 580 nm光谱范围内高效捕获太阳能。这些天线系统通过将吸收蓝光的萘单酰亚胺能量供体(、和)共价连接到吸收绿光的苝-3,4,9,10-四羧酸衍生能量受体、1,7-苝-3,4,9,10-四羧酸四丁酯()、1,7-苝-3,4,9,10-四羧酸单酰亚胺二丁酯()和1,7-苝-3,4,9,10-四羧酸双酰亚胺(),以模块化方式合成。能量供体连接在苝衍生物的1,7-位,从而使位可用于进一步功能化和器件构建。通过在组成发色团之间引入全芳香非共轭苯氧基间隔基,实现了一种高度稳定且刚性的结构,供体和受体组分之间无电子通信。选择与苝衍生物连接的供体萘衍生物是基于它们各自光学性质的有效匹配,以通过Förster机制实现高效的激发能量转移(EET)。在甲苯中对激发态动力学的全面研究表明,在所有研究的系统中,从供体萘发色团到受体苝存在定量且超快(1 ps)的分子内EET。未观察到从供体萘发色团到受体苝的电子转移,即使对于该过程在热力学上允许的天线系统也是如此。由于高效快速的能量转移与可见光区域的宽吸收相结合,这些天线系统是用于太阳能到电能和太阳能到燃料器件的有前景的材料。