Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6280-6285. doi: 10.1073/pnas.1701687114. Epub 2017 May 30.
The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y. This reaction is catalyzed by two unrelated cyclase enzymes using different chemistries. The majority of anoxygenic phototrophic bacteria use BchE, an O-sensitive [4Fe-4S] cluster protein, whereas plants, cyanobacteria, and some phototrophic bacteria possess an O-dependent enzyme, the major catalytic component of which is a diiron protein, AcsF. Plant and cyanobacterial mutants in display impaired function of the O-dependent enzyme, accumulating the reaction substrate. Swapping cyclases between cyanobacteria and purple phototrophic bacteria reveals three classes of the O-dependent enzyme. AcsF from the purple betaproteobacterium () rescues the loss not only of its cyanobacterial ortholog, , in sp. PCC 6803, but also of ; conversely, coexpression of cyanobacterial and is required to complement the loss of in These results indicate that Ycf54 is a cyclase subunit in oxygenic phototrophs, and that different classes of the enzyme exist based on their requirement for an additional subunit. AcsF is the cyclase in , whereas alphaproteobacterial cyclases require a newly discovered protein that we term BciE, encoded by a gene conserved in these organisms. These data delineate three classes of O-dependent cyclase in chlorophototrophic organisms from higher plants to bacteria, and their evolution is discussed herein.
(细菌)叶绿素色素的生物合成是地球上最具生产力的生物途径之一。光合作用依赖于这些经过修饰的四吡咯来捕获太阳辐射,并将其转化为化学能。(细菌)叶绿素具有一个非稠合的第五环,其形成已经困扰了超过 60 年。该反应由两种不相关的环化酶利用不同的化学物质催化。大多数厌氧光合细菌使用 BchE,一种对 O 敏感的 [4Fe-4S] 簇蛋白,而植物、蓝藻和一些光合细菌则具有依赖 O 的酶,其主要催化成分是二铁蛋白 AcsF。在 中显示出 O 依赖性酶功能受损的植物和蓝藻突变体,积累了反应底物。在蓝藻和紫色光合细菌之间交换环化酶揭示了三种类型的 O 依赖性酶。来自紫色β变形杆菌 () 的 AcsF 不仅挽救了其在蓝藻 sp. PCC 6803 中的同源物 () 的功能丧失,还挽救了 () 的功能丧失;相反,需要共表达蓝藻 () 和 () 来补充 () 在 中的缺失。这些结果表明 Ycf54 是好氧光合生物中的环化酶亚基,并且根据它们对额外亚基的需求,存在不同类型的酶。AcsF 是在 中的环化酶,而α变形杆菌环化酶需要一种新发现的蛋白,我们称之为 BciE,该蛋白由这些生物体中保守的基因编码。这些数据描绘了从高等植物到细菌的光合生物中 O 依赖性环化酶的三个类别,本文讨论了它们的进化。