Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India.
Manipal University, Manipal, 576104, Karnataka, India.
Sci Rep. 2017 May 30;7(1):2472. doi: 10.1038/s41598-017-02522-5.
In the recent years, bioinformatics methods have been reported with a high degree of success for candidate gene identification. In this milieu, we have used an integrated bioinformatics approach assimilating information from gene ontologies (GO), protein-protein interaction (PPI) and network analysis to predict candidate genes related to oral squamous cell carcinoma (OSCC). A total of 40973 PPIs were considered for 4704 cancer-related genes to construct human cancer gene network (HCGN). The importance of each node was measured in HCGN by ten different centrality measures. We have shown that the top ranking genes are related to a significantly higher number of diseases as compared to other genes in HCGN. A total of 39 candidate oral cancer target genes were predicted by combining top ranked genes and the genes corresponding to significantly enriched oral cancer related GO terms. Initial verification using literature and available experimental data indicated that 29 genes were related with OSCC. A detailed pathway analysis led us to propose a role for the selected candidate genes in the invasion and metastasis in OSCC. We further validated our predictions using immunohistochemistry (IHC) and found that the gene FLNA was upregulated while the genes ARRB1 and HTT were downregulated in the OSCC tissue samples.
近年来,生物信息学方法在候选基因鉴定方面取得了很高的成功率。在这种情况下,我们使用了一种综合的生物信息学方法,综合了基因本体论(GO)、蛋白质-蛋白质相互作用(PPI)和网络分析的信息,来预测与口腔鳞状细胞癌(OSCC)相关的候选基因。共考虑了 40973 个 PPI,用于构建人类癌症基因网络(HCGN)的 4704 个癌症相关基因。在 HCGN 中,通过十种不同的中心性度量来衡量每个节点的重要性。我们表明,与 HCGN 中的其他基因相比,排名靠前的基因与更高数量的疾病相关。通过结合排名靠前的基因和与显著富集的口腔癌相关 GO 术语对应的基因,共预测了 39 个候选口腔癌靶基因。使用文献和现有实验数据进行的初步验证表明,29 个基因与 OSCC 相关。详细的途径分析使我们提出了所选候选基因在 OSCC 侵袭和转移中的作用。我们进一步使用免疫组织化学(IHC)验证了我们的预测,发现 OSCC 组织样本中 FLNA 基因上调,而 ARRB1 和 HTT 基因下调。