Suppr超能文献

常规护理中的药物效果:以多非利特为例的新药序贯监测模型。

Effectiveness of Drugs in Routine Care: A Model for Sequential Monitoring of New Medicines Using Dronedarone as Example.

机构信息

Department of Medical Sciences, Uppsala University, Uppsala, Sweden.

Public Healthcare Services Committee Administration, Stockholm County Council, Stockholm, Sweden.

出版信息

Clin Pharmacol Ther. 2018 Mar;103(3):493-501. doi: 10.1002/cpt.751. Epub 2017 Jul 10.

Abstract

Although there is no doubt about the scientific value of randomized controlled clinical trials, they are usually conducted in selected populations different from those treated in clinical practice. Therefore, it is important to optimize real-time postmarketing evaluation of the effectiveness, safety, and cost of new drugs. Using electronic health records and administrative health databases from a well-defined region with universal access to healthcare, we have built a framework for real-time sequential monitoring of the effectiveness of newly marketed drugs in routine care. We chose the antiarrhythmic agent dronedarone as the study drug and flecainide as the comparator drug for illustration of the model. We demonstrate that this model produces consistent results with increasing precision over time as data accumulates in the clinical systems. We believe that use of this model at the introduction of new drugs can provide complementary evidence, especially in settings of adaptive licensing of new drugs.

摘要

虽然随机对照临床试验的科学价值毋庸置疑,但这些试验通常是在与临床实践中治疗的人群不同的选定人群中进行的。因此,优化新药物实时上市后有效性、安全性和成本的实时监测非常重要。我们利用来自一个具有全民医疗保健普遍可及性的明确界定区域的电子健康记录和行政健康数据库,构建了一个用于实时监测新上市药物在常规护理中有效性的实时序贯监测框架。我们选择抗心律失常药物决奈达隆作为研究药物,氟卡尼作为比较药物,以说明该模型。我们证明,随着临床系统中数据的积累,该模型的结果随着时间的推移变得越来越一致,并且精度也越来越高。我们相信,在引入新药时使用该模型可以提供补充证据,尤其是在新药适应性许可的情况下。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验