Autumn Kellar, Jindrich Devin, DeNardo Dale, Mueller Rachel
Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, California, 94720-3160.
Department of Integrative Biology, 3101 Valley Life Sciences Building, University of California, Berkeley, California, 94720-3160.
Evolution. 1999 Apr;53(2):580-599. doi: 10.1111/j.1558-5646.1999.tb03793.x.
Nocturnal geckos are active at body temperatures 10-35°C below the thermal optima for maximum rate of aerobic metabolism (V.O2max) of diurnal lizards. Therefore, given ancestral (diurnal) lizard physiology, nocturnality causes a substantial thermal handicap in locomotor performance. In prior studies, we hypothesized that a low minimum cost of locomotion (C ) in geckos was an adaptation that increased locomotor endurance capacity at low, nocturnal temperatures. However, C is only part of an integrated system that, in conjunction with the maximum rate of oxygen consumption, sets the maximum speed that can be sustained aerobically (termed the maximum aerobic speed or MAS). We conducted the first phylogenetic analysis of MAS and V.O2max lizards and found that the greatest changes in MAS, C and V.O2max (at activity temperatures) in the evolutionary history of lizards all coincided with the evolution of nocturnality in geckos. Geckos active at 15-25°C did not become optimized for nocturnal temperatures, or fully offset the thermal effects of nocturnality by evolving maximal rates of oxygen consumption comparable to diurnal lizards active at 35°C. Geckos did evolve MAS twice that of diurnal lizards running at low temperatures by evolving a remarkably low C . Allometric analysis and phylogenetically independent contrasts of V.O2max, C , and MAS indicate a 72% evolutionary decrease in V.O2max, (at activity temperatures) and a 50% evolutionary decrease in C concordant with the evolution of nocturnality in geckos. Experimental measurements show that decreased C in six species of gecko increased MAS by 50-120% compared to diurnal lizards at low temperatures. Thus, geckos sufficiently overcame the near paralyzing effects of nocturnal temperatures, but only offset about 50% of the decrease in MAS resulting from the low maximum rate of oxygen consumption. Although the nocturnal environment remains severely suboptimal, the evolution of a low cost of locomotion in the ancestor of geckos was highly adaptive for nocturnality. We also present a generalized approach to ecophysiological evolution that integrates phylogeny with the causal relationships among environment, physiology, and performance capacity. With respect to a clade, two hypotheses are central to our integrative approach: (1) a change of an environmental variable (e.g., temperature) causes a performance handicap; and (2) evolution of a physiological variable (e.g., minimum cost of locomotion [C ]) increases performance in the derived environment. To test the hypothesis that evolution of a physiological variable is adaptive in nature, we suggest determining if individuals in nature perform at levels exceeding the performance capacity of their hypothetical ancestors and if this additional performance capacity is due to the evolution of the physiological variable in question.
夜行性壁虎在比日行性蜥蜴有氧代谢最大速率(V.O2max)的最适温度低10 - 35°C的体温下活动。因此,考虑到祖先(日行性)蜥蜴的生理特征,夜行性会在运动表现方面造成严重的热障碍。在之前的研究中,我们假设壁虎较低的最低运动成本(C)是一种适应性特征,可提高其在低温夜行环境下的运动耐力。然而,C只是一个综合系统的一部分,该系统与最大耗氧速率共同决定了有氧条件下能够维持的最大速度(称为最大有氧速度或MAS)。我们首次对蜥蜴的MAS和V.O2max进行了系统发育分析,发现蜥蜴进化史上MAS、C和V.O2max(在活动温度下)的最大变化都与壁虎夜行性的进化相吻合。在15 - 25°C活动的壁虎并未针对夜行温度进行优化,也未通过进化出与在35°C活动的日行性蜥蜴相当的最大耗氧速率来完全抵消夜行性的热效应。壁虎确实通过进化出极低的C使MAS达到了在低温下奔跑的日行性蜥蜴的两倍。对V.O2max、C和MAS的异速生长分析以及系统发育独立对比表明,随着壁虎夜行性的进化,V.O2max(在活动温度下)在进化上下降了72%,C在进化上下降了50%。实验测量表明,与低温下的日行性蜥蜴相比,六种壁虎C的降低使MAS提高了50 - 120%。因此,壁虎充分克服了夜行温度带来的近乎麻痹的影响,但仅抵消了因最大耗氧速率低导致的MAS下降的约50%。尽管夜行环境仍然严重不理想,但壁虎祖先低运动成本的进化对夜行性具有高度适应性。我们还提出了一种将系统发育与环境、生理和性能能力之间的因果关系相结合的广义生态生理进化方法。对于一个进化枝,我们的综合方法有两个核心假设:(1)环境变量(如温度)的变化会导致性能障碍;(2)生理变量(如最低运动成本[C])的进化会提高在衍生环境中的性能。为了检验生理变量的进化本质上是适应性的这一假设,我们建议确定自然界中的个体表现是否超过其假设祖先的性能能力,以及这种额外的性能能力是否归因于所讨论的生理变量的进化。