Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, South Korea.
School of Physics, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
Sci Rep. 2017 May 31;7(1):2556. doi: 10.1038/s41598-017-02911-w.
It is advantageous to construct a dielectric metasurface in silicon due to its compatibility with cost-effective, mature processes for complementary metal-oxide-semiconductor devices. However, high-quality crystalline-silicon films are difficult to grow on foreign substrates. In this work, we propose and realize highly efficient structural color filters based on a dielectric metasurface exploiting hydrogenated amorphous silicon (a-Si:H), known to be lossy in the visible regime. The metasurface is comprised of an array of a-Si:H nanodisks embedded in a polymer, providing a homogeneously planarized surface that is crucial for practical applications. The a-Si:H nanodisk element is deemed to individually support an electric dipole (ED) and magnetic dipole (MD) resonance via Mie scattering, thereby leading to wavelength-dependent filtering characteristics. The ED and MD can be precisely identified by observing the resonant field profiles with the assistance of finite-difference time-domain simulations. The completed color filters provide a high transmission of around 90% in the off-resonance band longer than their resonant wavelengths, exhibiting vivid subtractive colors. A wide range of colors can be facilitated by tuning the resonance by adjusting the structural parameters like the period and diameter of the a-Si:H nanodisk. The proposed devices will be actively utilized to implement color displays, imaging devices, and photorealistic color printing.
由于其与成本效益高、成熟的互补金属氧化物半导体(CMOS)器件工艺兼容,在硅中构建介电超表面具有优势。然而,高质量的晶态硅薄膜很难在异质衬底上生长。在这项工作中,我们提出并实现了基于利用非晶硅(a-Si:H)的高效结构色滤波器,a-Si:H 在可见光范围内是有损耗的。该超表面由嵌入聚合物中的 a-Si:H 纳米盘阵列组成,提供了均匀平坦的表面,这对于实际应用至关重要。a-Si:H 纳米盘元件被认为通过米氏散射分别支持电偶极子(ED)和磁偶极子(MD)共振,从而导致波长相关的滤波特性。通过有限差分时域模拟的帮助观察共振场分布,可以精确识别 ED 和 MD。完成的颜色滤波器在大于其共振波长的非共振带中提供了约 90%的高透过率,显示出鲜艳的减色。通过调整结构参数(如 a-Si:H 纳米盘的周期和直径)来调整共振,可以实现广泛的颜色。所提出的器件将被积极用于实现彩色显示器、成像设备和逼真的彩色打印。