Santos Gonzalo, Losurdo Maria, Moreno Fernando, Gutiérrez Yael
Group of Optics, Department of Applied Physics Faculty of Sciences, University of Cantabria, 39005 Cantabria, Spain.
CNR ICMATE, Corso Stati Uniti 4, I-35127 Padova, Italy.
Nanomaterials (Basel). 2023 Jan 26;13(3):496. doi: 10.3390/nano13030496.
All-dielectric metasurfaces are a blooming field with a wide range of new applications spanning from enhanced imaging to structural color, holography, planar sensors, and directionality scattering. These devices are nanopatterned structures of sub-wavelength dimensions whose optical behavior (absorption, reflection, and transmission) is determined by the dielectric composition, dimensions, and environment. However, the functionality of these metasurfaces is fixed at the fabrication step by the geometry and optical properties of the dielectric materials, limiting their potential as active reconfigurable devices. Herein, a reconfigurable all-dielectric metasurface based on two high refractive index (HRI) materials like silicon (Si) and the phase-change chalcogenide antimony triselenide (SbSe) for the control of scattered light is proposed. It consists of a 2D array of Si-SbSe-Si sandwich disks embedded in a SiO matrix. The tunability of the device is provided through the amorphous-to-crystalline transition of SbSe. We demonstrate that in the SbSe amorphous state, all the light can be transmitted, as it is verified using the zero-backward condition, while in the crystalline phase most of the light is reflected due to a resonance whose origin is the contribution of the electric (ED) and magnetic (MD) dipoles and the anapole (AP) of the nanodisks. By this configuration, a contrast in transmission (Δ) of 0.81 at a wavelength of 980 nm by governing the phase of SbSe can be achieved.
全介质超表面是一个蓬勃发展的领域,具有广泛的新应用,涵盖从增强成像到结构色、全息术、平面传感器和定向散射等。这些器件是亚波长尺寸的纳米图案结构,其光学行为(吸收、反射和透射)由介电成分、尺寸和环境决定。然而,这些超表面的功能在制造步骤中由介电材料的几何形状和光学性质固定,限制了它们作为有源可重构器件的潜力。在此,提出了一种基于两种高折射率(HRI)材料(如硅(Si)和相变硫族化物三硒化锑(SbSe))的可重构全介质超表面,用于控制散射光。它由嵌入SiO基质中的Si-SbSe-Si三明治盘的二维阵列组成。该器件的可调性通过SbSe的非晶态到晶态转变来实现。我们证明,在SbSe非晶态下,所有光都可以透射,这通过零后向条件得到验证,而在晶态下,由于一种共振,大部分光被反射,这种共振的起源是纳米盘的电偶极(ED)、磁偶极(MD)和无偶极(AP)的贡献。通过这种配置,通过控制SbSe的相位,在980nm波长处可以实现0.81的透射对比度(Δ)。