Suppr超能文献

一种基于K-S检验和CFS的癌症基因选择算法

A Cancer Gene Selection Algorithm Based on the K-S Test and CFS.

作者信息

Su Qiang, Wang Yina, Jiang Xiaobing, Chen Fuxue, Lu Wen-Cong

机构信息

School of Communication & Information Engineering, Shanghai University, Shanghai 2000444, China.

Department of VIP Medical Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.

出版信息

Biomed Res Int. 2017;2017:1645619. doi: 10.1155/2017/1645619. Epub 2017 May 8.

Abstract

BACKGROUND

To address the challenging problem of selecting distinguished genes from cancer gene expression datasets, this paper presents a gene subset selection algorithm based on the Kolmogorov-Smirnov (K-S) test and correlation-based feature selection (CFS) principles. The algorithm selects distinguished genes first using the K-S test, and then, it uses CFS to select genes from those selected by the K-S test.

RESULTS

We adopted support vector machines (SVM) as the classification tool and used the criteria of accuracy to evaluate the performance of the classifiers on the selected gene subsets. This approach compared the proposed gene subset selection algorithm with the K-S test, CFS, minimum-redundancy maximum-relevancy (mRMR), and ReliefF algorithms. The average experimental results of the aforementioned gene selection algorithms for 5 gene expression datasets demonstrate that, based on accuracy, the performance of the new K-S and CFS-based algorithm is better than those of the K-S test, CFS, mRMR, and ReliefF algorithms.

CONCLUSIONS

The experimental results show that the K-S test-CFS gene selection algorithm is a very effective and promising approach compared to the K-S test, CFS, mRMR, and ReliefF algorithms.

摘要

背景

为了解决从癌症基因表达数据集中选择显著基因这一具有挑战性的问题,本文提出了一种基于柯尔莫哥洛夫-斯米尔诺夫(K-S)检验和基于相关性的特征选择(CFS)原则的基因子集选择算法。该算法首先使用K-S检验选择显著基因,然后使用CFS从K-S检验选择出的基因中进一步选择基因。

结果

我们采用支持向量机(SVM)作为分类工具,并使用准确率标准来评估分类器在所选基因子集上的性能。该方法将所提出的基因子集选择算法与K-S检验、CFS、最小冗余最大相关性(mRMR)和ReliefF算法进行了比较。上述基因选择算法对5个基因表达数据集的平均实验结果表明,基于准确率,新的基于K-S和CFS的算法性能优于K-S检验、CFS、mRMR和ReliefF算法。

结论

实验结果表明,与K-S检验、CFS、mRMR和ReliefF算法相比,K-S检验-CFS基因选择算法是一种非常有效且有前景的方法。

相似文献

1
6
Gene selection algorithm by combining reliefF and mRMR.结合reliefF和mRMR的基因选择算法。
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S27. doi: 10.1186/1471-2164-9-S2-S27.
8
SVM-RFE with MRMR filter for gene selection.基于 MRMR 滤波器的 SVM-RFE 基因选择方法。
IEEE Trans Nanobioscience. 2010 Mar;9(1):31-7. doi: 10.1109/TNB.2009.2035284. Epub 2009 Oct 30.

引用本文的文献

5
Diagnosing Cancer Using IOT and Machine Learning Methods.利用物联网和机器学习方法诊断癌症。
Comput Intell Neurosci. 2022 May 28;2022:9896490. doi: 10.1155/2022/9896490. eCollection 2022.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验