Acciaroli Giada, Sparacino Giovanni, Hakaste Liisa, Facchinetti Andrea, Di Nunzio Giorgio Maria, Palombit Alessandro, Tuomi Tiinamaija, Gabriel Rafael, Aranda Jaime, Vega Saturio, Cobelli Claudio
1 Department of Information Engineering, University of Padova, Padova, Italy.
2 Endocrinology, Abdominal Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
J Diabetes Sci Technol. 2018 Jan;12(1):105-113. doi: 10.1177/1932296817710478. Epub 2017 Jun 1.
Tens of glycemic variability (GV) indices are available in the literature to characterize the dynamic properties of glucose concentration profiles from continuous glucose monitoring (CGM) sensors. However, how to exploit the plethora of GV indices for classifying subjects is still controversial. For instance, the basic problem of using GV indices to automatically determine if the subject is healthy rather than affected by impaired glucose tolerance (IGT) or type 2 diabetes (T2D), is still unaddressed. Here, we analyzed the feasibility of using CGM-based GV indices to distinguish healthy from IGT&T2D and IGT from T2D subjects by means of a machine-learning approach.
The data set consists of 102 subjects belonging to three different classes: 34 healthy, 39 IGT, and 29 T2D subjects. Each subject was monitored for a few days by a CGM sensor that produced a glucose profile from which we extracted 25 GV indices. We used a two-step binary logistic regression model to classify subjects. The first step distinguishes healthy subjects from IGT&T2D, the second step classifies subjects into either IGT or T2D.
Healthy subjects are distinguished from subjects with diabetes (IGT&T2D) with 91.4% accuracy. Subjects are further subdivided into IGT or T2D classes with 79.5% accuracy. Globally, the classification into the three classes shows 86.6% accuracy.
Even with a basic classification strategy, CGM-based GV indices show good accuracy in classifying healthy and subjects with diabetes. The classification into IGT or T2D seems, not surprisingly, more critical, but results encourage further investigation of the present research.
文献中存在数十种血糖变异性(GV)指标,用于描述连续血糖监测(CGM)传感器所测葡萄糖浓度曲线的动态特性。然而,如何利用大量的GV指标对受试者进行分类仍存在争议。例如,使用GV指标自动判断受试者是否健康而非受糖耐量受损(IGT)或2型糖尿病(T2D)影响这一基本问题仍未得到解决。在此,我们通过机器学习方法分析了利用基于CGM的GV指标区分健康受试者与IGT&T2D受试者以及区分IGT与T2D受试者的可行性。
数据集由102名属于三个不同类别的受试者组成:34名健康受试者、39名IGT受试者和29名T2D受试者。每个受试者通过CGM传感器监测数天,该传感器生成葡萄糖曲线,我们从中提取了25个GV指标。我们使用两步二元逻辑回归模型对受试者进行分类。第一步区分健康受试者与IGT&T2D受试者,第二步将受试者分类为IGT或T2D。
健康受试者与糖尿病受试者(IGT&T2D)的区分准确率为91.4%。受试者进一步细分为IGT或T2D类别,准确率为79.5%。总体而言,三类分类的准确率为86.6%。
即使采用基本的分类策略,基于CGM的GV指标在区分健康受试者和糖尿病受试者方面也显示出良好的准确性。不出所料,IGT或T2D的分类似乎更具挑战性,但结果鼓励对本研究进行进一步调查。