Suppr超能文献

使用机器学习方法预测1型糖尿病成人患者发生糖尿病视网膜病变:一项探索性研究。

Prediction of Incident Diabetic Retinopathy in Adults With Type 1 Diabetes Using Machine Learning Approach: An Exploratory Study.

作者信息

Montaser Eslam, Shah Viral N

机构信息

Division of Endocrinology and Metabolism, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

Center for Diabetes and Metabolic Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.

出版信息

J Diabetes Sci Technol. 2024 Oct 28:19322968241292369. doi: 10.1177/19322968241292369.

Abstract

BACKGROUND

Early detection and intervention are crucial for preventing vision-threatening diabetic retinopathy (DR) in adults with type 1 diabetes (T1D). This exploratory study uses machine learning on continuous glucose monitoring (CGM) data to identify factors influencing DR and predict high-risk individuals for timely intervention.

METHODS

Between June 2018 and March 2022, adults with T1D with incident DR or no retinopathy (control) were identified. The CGM data were collected retrospectively for up to seven years before the date of defining incident DR or no retinopathy. A mixture of three machine learning algorithms was trained and evaluated in two different scenarios, using different glycemic features extracted from CGM traces (scenario 1), and the two principal components (two PCs; exposure to hyperglycemia and hypoglycemia risk) of those features (scenario 2). Classifiers were evaluated through 10-fold cross-validation using the receiver operating characteristic area under the curve (AUC-ROC) to select the best classification model.

RESULTS

The CGM data of 30 adults with incident DR (mean±SD age of 21.2±9.4 years, glycated hemoglobin [HbA] of 8.6%±1.0%, and body mass index [BMI] of 24.5±4.8 kg/m) and 30 adults without DR (age of 41.8±14.7 years, HbA of 7.0%±0.9%, and BMI of 26.2±3.6 kg/m) were included in this analysis. In scenario 2, classifiers outperformed scenario 1, resulting in an average AUC-ROC increase to 0.92 for two of three models, indicating that the two PCs captured vital classification data, representing the most discriminative aspects and enhancing model performance.

CONCLUSION

Machine learning approaches using CGM data may have potential to aid in identifying adults with T1D at risk of DR.

摘要

背景

早期检测和干预对于预防1型糖尿病(T1D)成年患者发生威胁视力的糖尿病视网膜病变(DR)至关重要。这项探索性研究利用机器学习分析连续血糖监测(CGM)数据,以确定影响DR的因素,并预测高危个体以便及时干预。

方法

在2018年6月至2022年3月期间,确定患有新发DR或无视网膜病变(对照)的T1D成年患者。回顾性收集CGM数据,时间跨度为定义新发DR或无视网膜病变日期前长达七年。在两种不同情况下训练和评估三种机器学习算法的组合,一种使用从CGM轨迹中提取的不同血糖特征(情况1),另一种使用这些特征的两个主成分(两个PC;高血糖和低血糖风险暴露)(情况2)。通过10倍交叉验证,使用曲线下接受者操作特征面积(AUC-ROC)评估分类器,以选择最佳分类模型。

结果

本分析纳入了30例患有新发DR的成年患者(平均±标准差年龄为21.2±9.4岁,糖化血红蛋白[HbA]为8.6%±1.0%,体重指数[BMI]为24.5±4.8kg/m²)和30例无DR的成年患者(年龄为41.8±14.7岁,HbA为7.0%±0.9%,BMI为26.2±3.6kg/m²)。在情况2中,分类器的表现优于情况1,导致三个模型中的两个模型的平均AUC-ROC提高到0.92,这表明两个PC捕获了重要的分类数据,代表了最具区分性的方面并提高了模型性能。

结论

使用CGM数据的机器学习方法可能有助于识别有DR风险的T1D成年患者。

相似文献

引用本文的文献

7
Recent advances in early diagnosis and treatment of T1D with miRNAs.微小RNA在1型糖尿病早期诊断与治疗中的最新进展
Front Endocrinol (Lausanne). 2025 May 15;16:1582963. doi: 10.3389/fendo.2025.1582963. eCollection 2025.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验