Suppr超能文献

具有可控键结构的硼碳氮催化剂的溶液等离子体合成

Solution plasma synthesis of a boron-carbon-nitrogen catalyst with a controllable bond structure.

作者信息

Lee SeungHyo, Heo YongKang, Bratescu Maria Antoaneta, Ueno Tomonaga, Saito Nagahiro

机构信息

Graduate School of Materials Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-u, Japan.

出版信息

Phys Chem Chem Phys. 2017 Jun 14;19(23):15264-15272. doi: 10.1039/c6cp06063c.

Abstract

Synthesis of boron-carbon-nitrogen (BCN) nanocarbon with a controllable bond structure for enhanced oxygen reduction reaction (ORR) activity and durability was performed using a new method of discharge in organic solution mixtures named the 'Solution Plasma Process'. Using selected precursors a new strategy for the simultaneous synthesis of nanocarbon co-doped with heteroatoms was found. The synergistic effect of N and B in an uncoupling bond state improved the formation of new active sites for the ORR performance by changing the electronic structure of the base carbon. Meanwhile, when B and N are bonded together, the BCN catalyst contributes to a reduced ORR activity by forming a balanced electronic structure in carbon. The BCN nanocarbon with an uncoupling bond state exhibits an enhanced ORR activity under alkaline conditions, with an onset potential of -0.25 V versus -0.31 V for B/N coupling and 3.43 transferred electrons during the ORR. Although the ORR activity of the B/N uncoupling nanocarbon was not as good as the typical Pt/C, the durability of this synthesized material (15.1% current decrease after 20 000 s of operation) was significantly better than that of the Pt/C catalyst (61.5% current drop under the same conditions). After the durability test, the increase of the chemical states containing oxygen was higher for Pt/C than B/N uncoupling.

摘要

采用一种名为“溶液等离子体工艺”的在有机溶液混合物中放电的新方法,合成了具有可控键结构的硼 - 碳 - 氮(BCN)纳米碳,以增强氧还原反应(ORR)活性和耐久性。通过选择前驱体,发现了一种同时合成杂原子共掺杂纳米碳的新策略。处于非耦合键状态的N和B的协同效应通过改变基础碳的电子结构,改善了用于ORR性能的新活性位点的形成。同时,当B和N结合在一起时,BCN催化剂通过在碳中形成平衡的电子结构导致ORR活性降低。处于非耦合键状态的BCN纳米碳在碱性条件下表现出增强的ORR活性,起始电位为 -0.25 V,而B/N耦合时为 -0.31 V,并且在ORR过程中有3.43个转移电子。尽管B/N非耦合纳米碳的ORR活性不如典型的Pt/C,但这种合成材料的耐久性(运行20000秒后电流降低15.1%)明显优于Pt/C催化剂(在相同条件下电流下降61.5%)。耐久性测试后,Pt/C中含氧化学状态的增加高于B/N非耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验