Park Chang-Hyeon, Kim Ui-Jun, Choi Jae-Hyuk, Lee Seung-Hyo
Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
Division of Marine System Engineering, Korea Maritime & Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Nov 20;16(46):63540-63552. doi: 10.1021/acsami.4c12535. Epub 2024 Nov 6.
NH is a versatile solution for the storage and distribution of sustainable energy, offering high energy density and promising applications as a renewable hydrogen carrier. However, electrochemical NH synthesis under ambient conditions remains challenging, such as low selectivity and efficiency, owing to the inertness of N≡N and competing reactions. In this study, a catalyst (MoC/NFC) comprising molybdenum carbide evenly dispersed on carbon doped with N and F heteroatoms was successfully synthesized using liquid-phase plasma. The MoC/NFC catalyst exhibited a maximum NH yield of 115 μg h mg with a faradaic efficiency of 1.15% at -0.7 V vs reversible hydrogen electrode in 0.1 M KOH electrolyte. Pyridinic- and pyrrolic-N atoms adjacent to the carbon pores served as active sites for N adsorption and enabled N triple bond cleavage. In addition, F doping contributed to N activation owing to the high electronegativity of 3.98, resulting in the attraction of more electrons. These findings demonstrate a significant advancement in the development of efficient catalysts for electrochemical ammonia synthesis, potentially paving the way for scalable and sustainable NH production methods that can support the growing demand for renewable energy storage solutions.
氨硼烷是一种用于可持续能源存储和分配的多功能解决方案,具有高能量密度,并有望作为可再生氢载体得到应用。然而,在环境条件下进行电化学合成氨硼烷仍然具有挑战性,例如由于N≡N的惰性和竞争反应导致选择性和效率较低。在本研究中,使用液相等离子体成功合成了一种催化剂(MoC/NFC),该催化剂由均匀分散在掺杂有N和F杂原子的碳上的碳化钼组成。在0.1 M KOH电解液中,相对于可逆氢电极,MoC/NFC催化剂在-0.7 V时表现出最大氨硼烷产率为115 μg h mg,法拉第效率为1.15%。与碳孔相邻的吡啶型和吡咯型N原子作为N吸附的活性位点,能够实现N三键的裂解。此外,由于F的高电负性(3.98),F掺杂有助于N的活化,从而吸引更多电子。这些发现表明在电化学合成氨硼烷的高效催化剂开发方面取得了重大进展,有可能为可扩展且可持续的氨硼烷生产方法铺平道路,以满足对可再生能源存储解决方案不断增长的需求。