FZI Research Center for Information Technology, 76131 Karlsruhe, Germany. Author to whom any correspondence should be addressed.
Bioinspir Biomim. 2017 Sep 1;12(5):055001. doi: 10.1088/1748-3190/aa7663.
Short-term visual prediction is important both in biology and robotics. It allows us to anticipate upcoming states of the environment and therefore plan more efficiently. In theoretical neuroscience, liquid state machines have been proposed as a biologically inspired method to perform asynchronous prediction without a model. However, they have so far only been demonstrated in simulation or small scale pre-processed camera images. In this paper, we use a liquid state machine to predict over the whole [Formula: see text] event stream provided by a real dynamic vision sensor (DVS, or silicon retina). Thanks to the event-based nature of the DVS, the liquid is constantly fed with data when an object is in motion, fully embracing the asynchronicity of spiking neural networks. We propose a smooth continuous representation of the event stream for the short-term visual prediction task. Moreover, compared to previous works (2002 Neural Comput. 2525 282-93 and Burgsteiner H et al 2007 Appl. Intell. 26 99-109), we scale the input dimensionality that the liquid operates on by two order of magnitudes. We also expose the current limits of our method by running experiments in a challenging environment where multiple objects are in motion. This paper is a step towards integrating biologically inspired algorithms derived in theoretical neuroscience to real world robotic setups. We believe that liquid state machines could complement current prediction algorithms used in robotics, especially when dealing with asynchronous sensors.
短期视觉预测在生物学和机器人学中都很重要。它使我们能够预测环境的未来状态,从而更有效地进行规划。在理论神经科学中,已经提出了液体状态机作为一种无需模型即可进行异步预测的生物启发方法。然而,它们迄今为止仅在模拟或小规模预处理的相机图像中得到了证明。在本文中,我们使用液体状态机来预测由真正的动态视觉传感器(DVS,或硅视网膜)提供的整个[公式:见正文]事件流。由于 DVS 的基于事件的性质,当物体移动时,液体不断地接收数据,充分利用了尖峰神经网络的异步性。我们为短期视觉预测任务提出了一种事件流的平滑连续表示。此外,与之前的工作(2002 年神经计算 2525 282-93 和 Burgsteiner H 等人 2007 年应用智能 26 99-109)相比,我们将液体操作的输入维度扩展了两个数量级。我们还通过在多个物体运动的具有挑战性的环境中运行实验,揭示了我们方法的当前局限性。本文是将理论神经科学中得出的生物启发算法整合到现实世界的机器人设置中的一步。我们相信液体状态机可以补充机器人中当前使用的预测算法,特别是在处理异步传感器时。