Suppr超能文献

伸展系统中的收缩性。

Contractility in an extensile system.

机构信息

Department of Physics, University Massachusetts Amherst, 01003, USA.

出版信息

Soft Matter. 2017 Jun 14;13(23):4268-4277. doi: 10.1039/c7sm00449d.

Abstract

Essentially all biology is active and dynamic. Biological entities autonomously sense, compute, and respond using energy-coupled ratchets that can produce force and do work. The cytoskeleton, along with its associated proteins and motors, is a canonical example of biological active matter, which is responsible for cargo transport, cell motility, division, and morphology. Prior work on cytoskeletal active matter systems showed either extensile or contractile dynamics. Here, we demonstrate a cytoskeletal system that can control the direction of the network dynamics to be either extensile, contractile, or static depending on the concentration of filaments or weak, transient crosslinkers through systematic variation of the crosslinker or microtubule concentrations. Based on these new observations and our previously published results, we created a simple one-dimensional model of the interaction of filaments within a bundle. Despite its simplicity, our model recapitulates the observed activities of our experimental system, implying that the dynamics of our finite networks of bundles are driven by the local filament-filament interactions within the bundle. Finally, we show that contractile phases can result in autonomously motile networks that resemble cells. Our results reveal a fundamentally important aspect of cellular self-organization: weak, transient interacting species can tune their interaction strength directly by tuning the local concentration to act like a rheostat. In this case, when the weak, transient proteins crosslink microtubules, they can tune the dynamics of the network to change from extensile to contractile to static. Our experiments and model allow us to gain a deeper understanding of cytoskeletal dynamics and provide an new understanding of the importance of weak, transient interactions to soft and biological systems.

摘要

基本上,所有的生物学都是活跃和动态的。生物实体通过能量耦合棘轮自主感知、计算和响应,这些棘轮可以产生力并做功。细胞骨架及其相关蛋白和马达是生物活性物质的典型例子,它负责货物运输、细胞运动、分裂和形态。以前关于细胞骨架活性物质系统的研究表明,细胞骨架的动力学要么是伸展性的,要么是收缩性的。在这里,我们展示了一个细胞骨架系统,可以根据纤维或弱、瞬变交联剂的浓度来控制网络动力学的方向,使其成为伸展性、收缩性或静态的。通过交联剂或微管浓度的系统变化。基于这些新的观察结果和我们之前发表的结果,我们创建了一个简单的一维模型,用于研究纤维束内纤维之间的相互作用。尽管它很简单,但我们的模型再现了我们实验系统的观察到的活动,这意味着我们有限的束状网络的动力学是由束内的局部纤维-纤维相互作用驱动的。最后,我们表明收缩相可以导致类似于细胞的自主运动网络。我们的结果揭示了细胞自组织的一个基本方面:弱、瞬变的相互作用物质可以通过调节局部浓度直接调节它们的相互作用强度,从而像变阻器一样起作用。在这种情况下,当弱、瞬变的蛋白质交联微管时,它们可以调节网络的动力学,从伸展性转变为收缩性,再转变为静态。我们的实验和模型使我们能够更深入地了解细胞骨架动力学,并提供对弱、瞬变相互作用对软物质和生物系统的重要性的新认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验