Chew Wei-Xiang, Henkin Gil, Nédélec François, Surrey Thomas
Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain.
Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
iScience. 2023 Jan 27;26(2):106063. doi: 10.1016/j.isci.2023.106063. eCollection 2023 Feb 17.
Active filament networks can organize into various dynamic architectures driven by cross-linking motors. Densities and kinetic properties of motors and microtubules have been shown previously to determine active microtubule network self-organization, but the effects of other control parameters are less understood. Using computer simulations, we study here how microtubule lengths and crowding effects determine active network architecture and dynamics. We find that attractive interactions mimicking crowding effects or long microtubules both promote the formation of extensile nematic networks instead of asters. When microtubules are very long and the network is highly connected, a new isotropically motile network state resembling a "gliding mesh" is predicted. Using reconstitutions, we confirm the existence of this gliding mesh experimentally. These results provide a better understanding of how active microtubule network organization can be controlled, with implications for cell biology and active materials in general.
活跃的细丝网络可以在交联马达的驱动下组织成各种动态结构。先前已表明,马达和微管的密度及动力学特性决定了活跃微管网络的自组织,但其他控制参数的影响则了解较少。在此,我们通过计算机模拟研究微管长度和拥挤效应如何决定活跃网络的结构和动力学。我们发现,模拟拥挤效应的吸引相互作用或长微管都能促进伸展向列网络而非星状体的形成。当微管非常长且网络高度连通时,预测会出现一种类似于“滑动网”的新的各向同性运动网络状态。通过重组实验,我们证实了这种滑动网的存在。这些结果有助于更好地理解如何控制活跃微管网络的组织,这对细胞生物学及一般的活性材料都有重要意义。