Suppr超能文献

活性微管网络的空间限制诱导大规模旋转细胞质流动。

Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow.

作者信息

Suzuki Kazuya, Miyazaki Makito, Takagi Jun, Itabashi Takeshi, Ishiwata Shin'ichi

机构信息

Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

Waseda Bioscience Research Institute in Singapore, Singapore 138667, Singapore.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):2922-2927. doi: 10.1073/pnas.1616001114. Epub 2017 Mar 6.

Abstract

Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow.

摘要

通过流体动力相互作用,运动单元的集体行为在比单个单元更大的长度尺度上诱导定向流体流动。在细胞中,由极性细丝和分子马达组成的活跃细胞骨架系统驱动流体流动,这一过程被称为细胞质环流。在纯化系统中,马达驱动的微管束伸长会产生类似湍流的流动;然而,微管束是否以及如何像在细胞中观察到的细胞质环流那样诱导大规模定向流动仍不清楚。在这里,我们采用卵提取物作为细胞质的模型系统,发现微管束伸长会诱导定向流动,其长度尺度和时间尺度取决于几何约束的存在。在动力蛋白活性较低时,驱动蛋白会使微管束聚集并滑动微管,形成可伸展的微管束。在大量提取物中,可伸展的微管束相互连接形成随机网络,长度尺度与微管束长度相当的涡旋流在多个位置持续出现并持续1分钟。当提取物被封装在液滴中时,可伸展的微管束会推动液滴边界。这种推力引发了随机取向的微管束网络的对称性破缺,导致微管束排列成旋转的涡旋结构。这种涡旋在长度尺度和时间尺度上诱导了旋转的细胞质流动,比在大量提取物中出现的涡旋流长10到100倍。我们的结果表明,微管系统不仅利用流体动力相互作用,还利用机械相互作用来诱导大规模的时间稳定的细胞质流动。

相似文献

2
Active contraction of microtubule networks.微管网络的主动收缩
Elife. 2015 Dec 23;4:e10837. doi: 10.7554/eLife.10837.
4
Swirling Instability of the Microtubule Cytoskeleton.微管细胞骨架的涡旋不稳定性。
Phys Rev Lett. 2021 Jan 15;126(2):028103. doi: 10.1103/PhysRevLett.126.028103.

引用本文的文献

1
Dynamic flow control through active matter programming language.通过活性物质编程语言实现动态流控制。
Nat Mater. 2025 Apr;24(4):615-625. doi: 10.1038/s41563-024-02090-w. Epub 2025 Jan 29.
5
Active condensation of filaments under spatial confinement.空间限制下细丝的主动凝聚。
Front Phys. 2022;10. doi: 10.3389/fphy.2022.897255. Epub 2022 Jun 24.

本文引用的文献

2
Active contraction of microtubule networks.微管网络的主动收缩
Elife. 2015 Dec 23;4:e10837. doi: 10.7554/eLife.10837.
3
A physical perspective on cytoplasmic streaming.细胞质流动的物理学视角。
Interface Focus. 2015 Aug 6;5(4):20150030. doi: 10.1098/rsfs.2015.0030.
6
Topology and dynamics of active nematic vesicles.活性向列囊泡的拓扑和动力学。
Science. 2014 Sep 5;345(6201):1135-9. doi: 10.1126/science.1254784.
9
Symmetry breaking and polarity establishment during mouse oocyte maturation.小鼠卵母细胞成熟过程中的对称性破缺和极性建立。
Philos Trans R Soc Lond B Biol Sci. 2013 Sep 23;368(1629):20130002. doi: 10.1098/rstb.2013.0002. Print 2013.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验