Department of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea.
Nanoscale. 2017 Jun 14;9(23):8015-8023. doi: 10.1039/c7nr00761b.
Slightly tapered SiGe nanowires (NWs) (x = 0.29-0.84) were synthesized via a vapor-liquid-solid procedure using Au as a catalyst. We measured the optically excited carrier dynamics of SiGe NWs as a function of Ge content using optical pump-THz probe spectroscopy. The measured -ΔT/T signals of SiGe NWs were converted into conductivity in the THz region. We developed a fitting formula to apply to indirect semiconductors such as SiGe, which explains the temporal population of photo-excited carriers in the band structure and the relationship between the trapping time and the defect states on an ultrafast time scale. From the fitting results, we extracted intra- and inter-valley transition times and trapping times of electrons and holes of SiGe NWs as a function of Ge content. On the basis of theoretical reports, we suggest a physical model to interpret the trapping times related to the species of interface defect states located at the oxide/NW: substoichiometric oxide states of Si(Ge), but not Si(Ge), could function as defect states capturing photo-excited electrons or holes and could determine the different trapping times of electrons and holes depending on negatively or neutrally charged states.
使用 Au 作为催化剂,通过汽-液-固(VLS)方法合成了具有轻微锥形的 SiGe 纳米线 (NWs) (x = 0.29-0.84)。我们使用光泵浦太赫兹探针光谱法测量了 SiGe NWs 的光学激发载流子动力学随 Ge 含量的变化。我们将 SiGe NWs 的测量的 -ΔT/T 信号转换为太赫兹区域的电导率。我们开发了一个拟合公式,适用于间接半导体,如 SiGe,该公式解释了带结构中光激发载流子的瞬态群体以及在超快时间尺度上的陷阱时间和缺陷态之间的关系。从拟合结果中,我们提取了 SiGe NWs 的电子和空穴的 intra- 和 inter-valley 跃迁时间和陷阱时间作为 Ge 含量的函数。根据理论报告,我们提出了一个物理模型来解释与位于氧化物/NW 界面的缺陷态种类有关的陷阱时间:亚化学计量的 Si(Ge)氧化物态而不是 Si(Ge) ,可以作为俘获光激发电子或空穴的缺陷态,并可以根据带负电或不带电的状态确定电子和空穴的不同陷阱时间。