Suppr超能文献

生成对抗网络在低剂量 CT 中的噪声降低。

Generative Adversarial Networks for Noise Reduction in Low-Dose CT.

出版信息

IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.

Abstract

Noise is inherent to low-dose CT acquisition. We propose to train a convolutional neural network (CNN) jointly with an adversarial CNN to estimate routine-dose CT images from low-dose CT images and hence reduce noise. A generator CNN was trained to transform low-dose CT images into routine-dose CT images using voxelwise loss minimization. An adversarial discriminator CNN was simultaneously trained to distinguish the output of the generator from routine-dose CT images. The performance of this discriminator was used as an adversarial loss for the generator. Experiments were performed using CT images of an anthropomorphic phantom containing calcium inserts, as well as patient non-contrast-enhanced cardiac CT images. The phantom and patients were scanned at 20% and 100% routine clinical dose. Three training strategies were compared: the first used only voxelwise loss, the second combined voxelwise loss and adversarial loss, and the third used only adversarial loss. The results showed that training with only voxelwise loss resulted in the highest peak signal-to-noise ratio with respect to reference routine-dose images. However, CNNs trained with adversarial loss captured image statistics of routine-dose images better. Noise reduction improved quantification of low-density calcified inserts in phantom CT images and allowed coronary calcium scoring in low-dose patient CT images with high noise levels. Testing took less than 10 s per CT volume. CNN-based low-dose CT noise reduction in the image domain is feasible. Training with an adversarial network improves the CNNs ability to generate images with an appearance similar to that of reference routine-dose CT images.

摘要

噪声是低剂量 CT 采集固有的。我们建议联合训练一个对抗卷积神经网络 (CNN),以便从低剂量 CT 图像中估算常规剂量 CT 图像,从而降低噪声。生成器 CNN 用于通过体素损失最小化将低剂量 CT 图像转换为常规剂量 CT 图像。同时训练对抗鉴别器 CNN 以区分生成器的输出与常规剂量 CT 图像。该鉴别器的性能被用作生成器的对抗损失。使用包含钙插入物的人体模型 CT 图像以及非对比增强的患者心脏 CT 图像进行了实验。对人体模型和患者分别以 20%和 100%的常规临床剂量进行扫描。比较了三种训练策略:第一种仅使用体素损失,第二种将体素损失与对抗损失相结合,第三种仅使用对抗损失。结果表明,仅使用体素损失进行训练可获得相对于参考常规剂量图像的最高峰值信噪比。然而,使用对抗损失训练的 CNN 更好地捕获了常规剂量图像的图像统计信息。噪声降低改善了对低剂量 CT 图像中钙化插入物的量化,并且可以在具有高噪声水平的低剂量患者 CT 图像中进行冠状动脉钙评分。每个 CT 容积的测试时间不到 10 秒。基于 CNN 的低剂量 CT 噪声降低在图像域中是可行的。使用对抗网络进行训练可提高 CNN 生成与参考常规剂量 CT 图像相似的图像的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验