Suppr超能文献

基于 Wasserstein 生成对抗网络的低剂量牙科 CT 成像伪影校正。

Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.

机构信息

Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China.

出版信息

Med Phys. 2019 Apr;46(4):1686-1696. doi: 10.1002/mp.13415. Epub 2019 Feb 14.

Abstract

PURPOSE

In recent years, health risks concerning high-dose x-ray radiation have become a major concern in dental computed tomography (CT) examinations. Therefore, adopting low-dose computed tomography (LDCT) technology has become a major focus in the CT imaging field. One of these LDCT technologies is downsampling data acquisition during low-dose x-ray imaging processes. However, reducing the radiation dose can adversely affect CT image quality by introducing noise and artifacts in the resultant image that can compromise diagnostic information. In this paper, we propose an artifact correction method for downsampling CT reconstruction based on deep learning.

METHOD

We used clinical dental CT data with low-dose artifacts reconstructed by conventional filtered back projection (FBP) as inputs to a deep neural network and corresponding high-quality labeled normal-dose CT data during training. We trained a generative adversarial network (GAN) with Wasserstein distance (WGAN) and mean squared error (MSE) loss, called m-WGAN, to remove artifacts and obtain high-quality CT dental images in a clinical dental CT examination environment.

RESULTS

The experimental results confirmed that the proposed algorithm effectively removes low-dose artifacts from dental CT scans. In addition, we showed that the proposed method is efficient for removing noise from low-dose CT scan images compared to existing approaches. We compared the performances of the general GAN, convolutional neural networks, and m-WGAN. Through quantitative and qualitative analysis of the results, we concluded that the proposed m-WGAN method resulted in better artifact correction performance preserving the texture in dental CT scanning.

CONCLUSIONS

The image quality evaluation metrics indicated that the proposed method effectively improves image quality when used as a postprocessing technique for dental CT images. To the best of our knowledge, this work is the first deep learning architecture used with a commercial cone-beam dental CT scanner. The artifact correction performance was rigorously evaluated and demonstrated to be effective. Therefore, we believe that the proposed algorithm represents a new direction in the research area of low-dose dental CT artifact correction.

摘要

目的

近年来,高剂量 X 射线辐射对健康的影响已成为牙科计算机断层扫描(CT)检查的主要关注点。因此,采用低剂量 CT(LDCT)技术已成为 CT 成像领域的主要焦点。其中一种 LDCT 技术是在低剂量 X 射线成像过程中对数据进行下采样采集。然而,降低辐射剂量会通过在图像中引入噪声和伪影来降低 CT 图像质量,从而影响诊断信息。在本文中,我们提出了一种基于深度学习的下采样 CT 重建的伪影校正方法。

方法

我们使用临床牙科 CT 数据,这些数据是通过常规滤波反投影(FBP)重建的,具有低剂量伪影作为输入,同时使用训练过程中高质量的标记正常剂量 CT 数据。我们使用具有 Wasserstein 距离(WGAN)和均方误差(MSE)损失的生成对抗网络(GAN),即 m-WGAN,来训练一个去除伪影并获得高质量 CT 牙科图像的模型,该模型是在临床牙科 CT 检查环境下进行的。

结果

实验结果证实,该算法有效地去除了牙科 CT 扫描中的低剂量伪影。此外,我们还表明,与现有方法相比,该方法在去除低剂量 CT 扫描图像中的噪声方面非常有效。我们比较了一般 GAN、卷积神经网络和 m-WGAN 的性能。通过对结果的定量和定性分析,我们得出结论,所提出的 m-WGAN 方法在保留牙科 CT 扫描纹理的情况下,对伪影校正性能更好。

结论

图像质量评估指标表明,该方法作为牙科 CT 图像的后处理技术,可以有效地提高图像质量。据我们所知,这是首次使用商业锥形束牙科 CT 扫描仪的深度学习架构。我们对伪影校正性能进行了严格评估,并证明其有效。因此,我们相信该算法代表了低剂量牙科 CT 伪影校正研究领域的一个新方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验