文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

污染物在细胞上皮液中生成羟自由基,这由活性氧的相互转化和清除所控制。

Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species.

机构信息

Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany.

Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.

出版信息

Environ Sci Technol. 2021 Oct 19;55(20):14069-14079. doi: 10.1021/acs.est.1c03875. Epub 2021 Oct 5.


DOI:10.1021/acs.est.1c03875
PMID:34609853
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8529872/
Abstract

Air pollution is a major risk factor for human health. Chemical reactions in the epithelial lining fluid (ELF) of the human respiratory tract result in the formation of reactive oxygen species (ROS), which can lead to oxidative stress and adverse health effects. We use kinetic modeling to quantify the effects of fine particulate matter (PM2.5), ozone (O), and nitrogen dioxide (NO) on ROS formation, interconversion, and reactivity, and discuss different chemical metrics for oxidative stress, such as cumulative production of ROS and hydrogen peroxide (HO) to hydroxyl radical (OH) conversion. All three air pollutants produce ROS that accumulate in the ELF as HO, which serves as reservoir for radical species. At low PM2.5 concentrations (<10 μg m), we find that less than 4% of all produced HO is converted into highly reactive OH, while the rest is intercepted by antioxidants and enzymes that serve as ROS buffering agents. At elevated PM2.5 concentrations (>10 μg m), however, Fenton chemistry overwhelms the ROS buffering effect and leads to a tipping point in HO fate, causing a strong nonlinear increase in OH production. This shift in ROS chemistry and the enhanced OH production provide a tentative mechanistic explanation for how the inhalation of PM2.5 induces oxidative stress and adverse health effects.

摘要

空气污染是影响人类健康的主要风险因素之一。人类呼吸道上皮衬液(ELF)中的化学反应导致活性氧(ROS)的形成,从而导致氧化应激和不良健康影响。我们使用动力学模型来量化细颗粒物(PM2.5)、臭氧(O3)和二氧化氮(NO2)对 ROS 形成、相互转化和反应性的影响,并讨论了不同的化学指标来评估氧化应激,如 ROS 总生成量和过氧化氢(HO)向羟基自由基(OH)的转化率。这三种空气污染物都会产生 ROS,这些 ROS 会在 ELF 中积累为 HO,HO 是自由基的储存库。在低 PM2.5 浓度(<10 μg m)下,我们发现只有不到 4%的 HO 转化为高反应性的 OH,其余的则被抗氧化剂和酶拦截,这些抗氧化剂和酶起到 ROS 缓冲剂的作用。然而,在高 PM2.5 浓度(>10 μg m)下,芬顿化学会破坏 ROS 缓冲作用,导致 HO 命运的转折点,从而导致 OH 生成的强烈非线性增加。这种 ROS 化学的转变和增强的 OH 生成提供了一个推测性的机制解释,说明吸入 PM2.5 如何导致氧化应激和不良健康影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/97843520d50f/es1c03875_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/649166fedbdf/es1c03875_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/41289ccf634e/es1c03875_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/796803be578b/es1c03875_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/c79f19d78781/es1c03875_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/97843520d50f/es1c03875_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/649166fedbdf/es1c03875_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/41289ccf634e/es1c03875_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/796803be578b/es1c03875_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/c79f19d78781/es1c03875_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef38/8529872/97843520d50f/es1c03875_0006.jpg

相似文献

[1]
Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species.

Environ Sci Technol. 2021-10-19

[2]
Chemical and Cellular Formation of Reactive Oxygen Species from Secondary Organic Aerosols in Epithelial Lining Fluid.

Res Rep Health Eff Inst. 2023-12

[3]
Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid.

Environ Sci Technol. 2019-10-11

[4]
Multiphase Kinetic Modeling of Air Pollutant Effects on Protein Modification and Nitrotyrosine Formation in Epithelial Lining Fluid.

Environ Sci Technol. 2023-8-29

[5]
Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

Sci Rep. 2016-9-8

[6]
Responses of tropical tree species to urban air pollutants: ROS/RNS formation and scavenging.

Sci Total Environ. 2019-12-31

[7]
Reactive Oxygen Species Formed by Secondary Organic Aerosols in Water and Surrogate Lung Fluid.

Environ Sci Technol. 2018-10-4

[8]
Oxidative Potential by PM in the North China Plain: Generation of Hydroxyl Radical.

Environ Sci Technol. 2018-12-18

[9]
Exposure to O and NO on the interfacial chemistry of the pulmonary surfactant and the mechanism of lung oxidative damage.

Chemosphere. 2024-8

[10]
Influence of aerosol acidity and organic ligands on transition metal solubility and oxidative potential of fine particulate matter in urban environments.

Sci Total Environ. 2024-1-1

引用本文的文献

[1]
Xenobiotic Toxicants and Particulate Matter: Effects, Mechanisms, Impacts on Human Health, and Mitigation Strategies.

J Xenobiot. 2025-8-14

[2]
Inhibits Pulmonary Inflammation and Fibrosis in PM-Induced Dysfunction Through the Regulation of the TLR4/TGF-β1 Signaling Pathway in Mice.

Int J Mol Sci. 2025-5-25

[3]
Differential inflammation, oxidative stress and cardiovascular damage markers of nano- and micro-particle exposure in mice: Implications for human disease burden.

Redox Biol. 2025-6

[4]
Potential Health Impacts, Treatments, and Countermeasures of Martian Dust on Future Human Space Exploration.

Geohealth. 2025-2-12

[5]
Multiphase Radical Chemical Processes Induced by Air Pollutants and the Associated Health Effects.

Environ Health (Wash). 2024-10-21

[6]
A Combined Extract from and Mitigates PM-Induced Respiratory Damage by NF-κB/TGF-β1 Pathway.

Antioxidants (Basel). 2024-12-20

[7]
The Association Between Air Pollution Exposure and White Blood Cell Counts: A Nationwide Cross-Sectional Survey in South Korea.

J Clin Med. 2024-12-5

[8]
Carbon Nanoparticle Oxidation by NO and O: Chemical Kinetics and Reaction Pathways.

Angew Chem Int Ed Engl. 2024-12-20

[9]
Seasonal Changes in the Oxidative Potential of Urban Air Pollutants: The Influence of Emission Sources and Proton- and Ligand-Mediated Dissolution of Transition Metals.

ACS EST Air. 2024-8-29

[10]
Iron-Containing Seed Particles Enhance α-Pinene Secondary Organic Aerosol Mass Concentration and Dimer Formation.

Environ Sci Technol. 2024-9-10

本文引用的文献

[1]
Within-City Variation in Reactive Oxygen Species from Fine Particle Air Pollution and COVID-19.

Am J Respir Crit Care Med. 2021-7-15

[2]
A Population-Based Cohort Study of Respiratory Disease and Long-Term Exposure to Iron and Copper in Fine Particulate Air Pollution and Their Combined Impact on Reactive Oxygen Species Generation in Human Lungs.

Environ Sci Technol. 2021-3-16

[3]
Effects of albumin, transferrin and humic-like substances on iron-mediated OH radical formation in human lung fluids.

Free Radic Biol Med. 2021-3

[4]
Long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species concentration in lung fluid: a population-based cohort study of cardiovascular disease incidence and mortality in Toronto, Canada.

Int J Epidemiol. 2021-5-17

[5]
Superoxide Formation from Aqueous Reactions of Biogenic Secondary Organic Aerosols.

Environ Sci Technol. 2021-1-5

[6]
Spatial variations in the estimated production of reactive oxygen species in the epithelial lung lining fluid by iron and copper in fine particulate air pollution.

Environ Epidemiol. 2018-9

[7]
The Response in Air Quality to the Reduction of Chinese Economic Activities During the COVID-19 Outbreak.

Geophys Res Lett. 2020-6-16

[8]
Proton-Catalyzed Decomposition of α-Hydroxyalkyl-Hydroperoxides in Water.

Environ Sci Technol. 2020-8-15

[9]
Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management.

Free Radic Biol Med. 2020-5-1

[10]
Reactive oxygen species (ROS) as pleiotropic physiological signalling agents.

Nat Rev Mol Cell Biol. 2020-3-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索