Chiliveri Sai Chaitanya, Aute Ramdas, Rai Upasana, Deshmukh Mandar V
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
Academy of Scientific and Innovative Research (AcSIR), CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
Nucleic Acids Res. 2017 Aug 21;45(14):8551-8563. doi: 10.1093/nar/gkx481.
In Arabidopsis thaliana, endogenous trans-acting and exogenous siRNA pathways are initiated by the interaction of DRB4 with trigger dsRNA. Further, DCL4:DRB4 complex cleaves the dsRNA into 21 bp siRNA. Understanding molecular determinants and mechanistic details of dsRNA recognition by DRB4 is vital for inducing long-term RNAi-mediated gene regulation in plants. Here, we present solution structures of individual and concatenated DRB4 dsRBDs and demonstrate modes of dsRNA binding by employing NMR, ITC and site-specific mutagenesis. While both dsRBDs adopt the canonical α-β-β-β-α fold, key structural differences and ms-μs dynamics located at the RNA binding region were observed for dsRBD1. These features favor dsRBD1 to orient itself and make stronger tripartite contact with dsRNA, a feature missing in dsRBD2. Additionally, the inter-domain orientation induced by the linker restricts the mobility of dsRBD2, resulting in the steric hindrance of α1 helix in dsRBD2, and leads in further reduction of its dsRNA binding activity. Our study deciphers functional roles of DRB4 domains by showing that dsRBD1 drives the tasiRNA/siRNA pathway. Furthermore, we identify a potential role of the C-terminal region of DRB4 in protein:protein interaction as it possesses six PxxP motifs, binds to Zn2+ and contains a small structural domain.
在拟南芥中,内源性反式作用和外源性小干扰RNA(siRNA)途径由DRB4与触发双链RNA(dsRNA)的相互作用启动。此外,DCL4:DRB4复合物将dsRNA切割成21个碱基对的siRNA。了解DRB4识别dsRNA的分子决定因素和机制细节对于诱导植物中由RNA干扰介导的长期基因调控至关重要。在此,我们展示了单个和串联的DRB4双链RNA结合结构域(dsRBD)的溶液结构,并通过核磁共振(NMR)、等温滴定量热法(ITC)和位点特异性诱变证明了dsRNA的结合模式。虽然两个dsRBD均采用典型的α-β-β-β-α折叠,但在dsRBD1的RNA结合区域观察到关键的结构差异和毫秒至微秒级动力学。这些特征有利于dsRBD1自我定向并与dsRNA形成更强的三方接触,而dsRBD2则缺乏这一特征。此外,连接子诱导的结构域间取向限制了dsRBD2的流动性,导致dsRBD2中α1螺旋的空间位阻,并进一步降低其dsRNA结合活性。我们的研究通过表明dsRBD1驱动反式作用小干扰RNA(tasiRNA)/siRNA途径来解读DRB4结构域的功能作用。此外,我们确定了DRB4 C末端区域在蛋白质-蛋白质相互作用中的潜在作用,因为它具有六个PxxP基序,能结合Zn2+并包含一个小结构域。