Suppr超能文献

通过时间干扰电场进行无创深部脑刺激

Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

作者信息

Grossman Nir, Bono David, Dedic Nina, Kodandaramaiah Suhasa B, Rudenko Andrii, Suk Ho-Jun, Cassara Antonino M, Neufeld Esra, Kuster Niels, Tsai Li-Huei, Pascual-Leone Alvaro, Boyden Edward S

机构信息

Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, SW7 0AZ London, UK.

Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA.

出版信息

Cell. 2017 Jun 1;169(6):1029-1041.e16. doi: 10.1016/j.cell.2017.05.024.

Abstract

We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice.

摘要

我们报告了一种用于深度电刺激神经元的非侵入性策略。通过向大脑传递多个频率过高而无法引发神经放电的电场,但这些电场在神经放电的动态范围内频率有所不同,我们可以在一个区域内对神经元进行电刺激,在该区域中多个电场之间的干扰会导致一个以差频调制的显著电场包络。我们通过建模和物理实验验证了这种时间干扰(TI)概念,并证实活体小鼠大脑中的神经元能够跟随电场包络。我们通过刺激活体小鼠海马体中的神经元而不激活上层皮质的神经元,证明了TI刺激的效用。最后,我们表明,通过改变输送到一组固定电极的电流,我们可以在活体小鼠中可控地诱发不同的运动模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd6/6167940/cdfde756768d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验