Kreisbeck Christoph, Kramer Tobias, Rodríguez Mirta, Hein Birgit
Institut für Theoretische Physik, Universität Regensburg , 93040 Regensburg, Germany.
Instituto de Estructura de la Materia CSIC , C/Serrano 121, 28006 Madrid, Spain.
J Chem Theory Comput. 2011 Jul 12;7(7):2166-74. doi: 10.1021/ct200126d. Epub 2011 Jun 9.
Excitonic models of light-harvesting complexes, where the vibrational degrees of freedom are treated as a bath, are commonly used to describe the motion of the electronic excitation through a molecule. Recent experiments point toward the possibility of memory effects in this process and require one to consider time nonlocal propagation techniques. The hierarchical equations of motion (HEOM) were proposed by Ishizaki and Fleming to describe the site-dependent reorganization dynamics of protein environments ( J. Chem. Phys. 2009 , 130 , 234111 ), which plays a significant role in photosynthetic electronic energy transfer. HEOM are often used as a reference for other approximate methods but have been implemented only for small systems due to their adverse computational scaling with the system size. Here, we show that HEOM are also solvable for larger systems, since the underlying algorithm is ideally suited for the usage of graphics processing units (GPU). The tremendous reduction in computational time due to the GPU allows us to perform a systematic study of the energy-transfer efficiency in the Fenna-Matthews-Olson (FMO) light-harvesting complex at physiological temperature under full consideration of memory effects. We find that approximative methods differ qualitatively and quantitatively from the HEOM results and discuss the importance of finite temperature to achieving high energy-transfer efficiencies.
在激子模型的光捕获复合物中,振动自由度被视为一种热库,该模型通常用于描述电子激发在分子中的运动。最近的实验表明,这一过程中可能存在记忆效应,因此需要考虑时间非局部传播技术。石崎和弗莱明提出了层级运动方程(HEOM)来描述蛋白质环境中与位点相关的重组动力学(《化学物理杂志》,2009年,第130卷,第234111页),这在光合电子能量转移中起着重要作用。HEOM常被用作其他近似方法的参考,但由于其计算量随系统大小呈不利缩放,仅在小系统中得以实现。在此,我们表明,由于底层算法非常适合使用图形处理单元(GPU),HEOM对于更大的系统也是可解的。GPU带来的计算时间大幅减少,使我们能够在充分考虑记忆效应的情况下,对生理温度下的费纳 - 马修斯 - 奥尔森(FMO)光捕获复合物中的能量转移效率进行系统研究。我们发现,近似方法在定性和定量上都与HEOM结果不同,并讨论了有限温度对于实现高能量转移效率的重要性。