Suppr超能文献

使用本征正交分解和岭回归合并计算流体动力学和四维流动磁共振成像

Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.

作者信息

Bakhshinejad Ali, Baghaie Ahmadreza, Vali Alireza, Saloner David, Rayz Vitaliy L, D'Souza Roshan M

机构信息

Department of Mechanical Engineering, University of Wisconsin-Milwaukee, United States.

Department of Biomedical Engineering, Purdue University, United States.

出版信息

J Biomech. 2017 Jun 14;58:162-173. doi: 10.1016/j.jbiomech.2017.05.004. Epub 2017 May 17.

Abstract

Time resolved phase-contrast magnetic resonance imaging 4D-PCMR (also called 4D Flow MRI) data while capable of non-invasively measuring blood velocities, can be affected by acquisition noise, flow artifacts, and resolution limits. In this paper, we present a novel method for merging 4D Flow MRI with computational fluid dynamics (CFD) to address these limitations and to reconstruct de-noised, divergence-free high-resolution flow-fields. Proper orthogonal decomposition (POD) is used to construct the orthonormal basis of the local sampling of the space of all possible solutions to the flow equations both at the low-resolution level of the 4D Flow MRI grid and the high-level resolution of the CFD mesh. Low-resolution, de-noised flow is obtained by projecting in vivo 4D Flow MRI data onto the low-resolution basis vectors. Ridge regression is then used to reconstruct high-resolution de-noised divergence-free solution. The effects of 4D Flow MRI grid resolution, and noise levels on the resulting velocity fields are further investigated. A numerical phantom of the flow through a cerebral aneurysm was used to compare the results obtained using the POD method with those obtained with the state-of-the-art de-noising methods. At the 4D Flow MRI grid resolution, the POD method was shown to preserve the small flow structures better than the other methods, while eliminating noise. Furthermore, the method was shown to successfully reconstruct details at the CFD mesh resolution not discernible at the 4D Flow MRI grid resolution. This method will improve the accuracy of the clinically relevant flow-derived parameters, such as pressure gradients and wall shear stresses, computed from in vivo 4D Flow MRI data.

摘要

时间分辨相位对比磁共振成像4D-PCMR(也称为4D流动MRI)数据虽然能够无创测量血流速度,但可能会受到采集噪声、流动伪影和分辨率限制的影响。在本文中,我们提出了一种将4D流动MRI与计算流体动力学(CFD)相结合的新方法,以解决这些限制,并重建去噪的、无散度的高分辨率流场。适当正交分解(POD)用于在4D流动MRI网格的低分辨率水平和CFD网格的高分辨率水平上构建流动方程所有可能解空间的局部采样的正交基。通过将体内4D流动MRI数据投影到低分辨率基向量上,获得低分辨率、去噪的流场。然后使用岭回归来重建高分辨率去噪的无散度解。进一步研究了4D流动MRI网格分辨率和噪声水平对所得速度场的影响。使用通过脑动脉瘤的血流数值模型,将使用POD方法获得的结果与使用最先进的去噪方法获得的结果进行比较。在4D流动MRI网格分辨率下,POD方法在消除噪声的同时,比其他方法能更好地保留小的流动结构。此外,该方法被证明能够成功重建在4D流动MRI网格分辨率下无法分辨的CFD网格分辨率下的细节。该方法将提高从体内4D流动MRI数据计算出的临床相关流动衍生参数(如压力梯度和壁面剪应力)的准确性。

相似文献

1
Merging computational fluid dynamics and 4D Flow MRI using proper orthogonal decomposition and ridge regression.
J Biomech. 2017 Jun 14;58:162-173. doi: 10.1016/j.jbiomech.2017.05.004. Epub 2017 May 17.
2
Denoising and spatial resolution enhancement of 4D flow MRI using proper orthogonal decomposition and lasso regularization.
Comput Med Imaging Graph. 2018 Dec;70:165-172. doi: 10.1016/j.compmedimag.2018.07.003. Epub 2018 Aug 7.
3
Towards multi-modal data fusion for super-resolution and denoising of 4D-Flow MRI.
Int J Numer Method Biomed Eng. 2020 Sep;36(9):e3381. doi: 10.1002/cnm.3381. Epub 2020 Aug 13.
5
Inflow Hemodynamics of Intracranial Aneurysms: A Comparison of Computational Fluid Dynamics and 4D Flow Magnetic Resonance Imaging.
J Stroke Cerebrovasc Dis. 2021 May;30(5):105685. doi: 10.1016/j.jstrokecerebrovasdis.2021.105685. Epub 2021 Mar 1.

引用本文的文献

1
Beyond Size: Advanced MRI Breakthroughs in Predicting Intracranial Aneurysm Rupture Risk.
J Clin Med. 2025 May 2;14(9):3158. doi: 10.3390/jcm14093158.
2
Type B aortic dissection in Marfan patients after the David procedure: Insights from patient-specific simulation.
JTCVS Open. 2024 May 9;21:1-16. doi: 10.1016/j.xjon.2024.04.017. eCollection 2024 Oct.
3
Super-Resolving and Denoising 4D flow MRI of Neurofluids Using Physics-Guided Neural Networks.
Ann Biomed Eng. 2025 Feb;53(2):331-347. doi: 10.1007/s10439-024-03606-w. Epub 2024 Sep 2.
4
Towards Reduced Order Models via Robust Proper Orthogonal Decomposition to capture personalised aortic haemodynamics.
J Biomech. 2023 Sep;158:111759. doi: 10.1016/j.jbiomech.2023.111759. Epub 2023 Aug 10.
7
SRflow: Deep learning based super-resolution of 4D-flow MRI data.
Front Artif Intell. 2022 Aug 12;5:928181. doi: 10.3389/frai.2022.928181. eCollection 2022.
8
Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging.
IEEE Trans Med Imaging. 2022 Sep;41(9):2285-2303. doi: 10.1109/TMI.2022.3161653. Epub 2022 Aug 31.
9
A multi-modality approach for enhancing 4D flow magnetic resonance imaging via sparse representation.
J R Soc Interface. 2022 Jan;19(186):20210751. doi: 10.1098/rsif.2021.0751. Epub 2022 Jan 19.

本文引用的文献

1
Computational Fluid Dynamics modeling of contrast transport in basilar aneurysms following flow-altering surgeries.
J Biomech. 2017 Jan 4;50:195-201. doi: 10.1016/j.jbiomech.2016.11.028. Epub 2016 Nov 11.
2
Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
Biomed Eng Online. 2015 Nov 26;14:110. doi: 10.1186/s12938-015-0104-7.
3
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation.
Med Image Anal. 2015 Dec;26(1):159-72. doi: 10.1016/j.media.2015.08.012. Epub 2015 Sep 8.
5
Cardiovascular magnetic resonance phase contrast imaging.
J Cardiovasc Magn Reson. 2015 Aug 9;17(1):71. doi: 10.1186/s12968-015-0172-7.
6
Robust 4D flow denoising using divergence-free wavelet transform.
Magn Reson Med. 2015 Feb;73(2):828-42. doi: 10.1002/mrm.25176. Epub 2014 Feb 18.
7
Fast acquisition and reconstruction of optical coherence tomography images via sparse representation.
IEEE Trans Med Imaging. 2013 Nov;32(11):2034-49. doi: 10.1109/TMI.2013.2271904. Epub 2013 Jul 3.
8
Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD.
Ann Biomed Eng. 2013 Apr;41(4):657-68. doi: 10.1007/s10439-012-0703-4. Epub 2012 Nov 27.
9
Image transformation based on learning dictionaries across image spaces.
IEEE Trans Pattern Anal Mach Intell. 2013 Feb;35(2):367-80. doi: 10.1109/TPAMI.2012.95.
10
Reconstruction of divergence-free velocity fields from cine 3D phase-contrast flow measurements.
Magn Reson Med. 2013 Jan;69(1):200-10. doi: 10.1002/mrm.24221. Epub 2012 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验