Suppr超能文献

基于神经网络的学习内核用于磁共振图像上多发性硬化病变的自动分割

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images.

作者信息

Khastavaneh H, Ebrahimpour-Komleh H

机构信息

Department of Computer Engineering, Faculty of Computer and Electrical Engineering, University of Kashan, Kashan, Iran.

出版信息

J Biomed Phys Eng. 2017 Jun 1;7(2):155-162. eCollection 2017 Jun.

Abstract

BACKGROUND

Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need.

MATERIALS AND METHODS

In order to segment MS lesions, a method based on learning kernels has been proposed. The proposed method has three main steps namely; pre-processing, sub-region extraction and segmentation. The segmentation is performed by a kernel. This kernel is trained using a modified version of a special type of Artificial Neural Networks (ANN) called Massive Training ANN (MTANN). The kernel incorporates surrounding pixel information as features for classification of middle pixel of kernel. The materials of this study include a part of MICCAI 2008 MS lesion segmentation grand challenge data-set.

RESULTS

Both qualitative and quantitative results show promising results. Similarity index of 70 percent in some cases is considered convincing. These results are obtained from information of only one MRI channel rather than multi-channel MRIs.

CONCLUSION

This study shows the potential of surrounding pixel information to be incorporated in segmentation by learning kernels. The performance of proposed method will be improved using a special pre-processing pipeline and also a post-processing step for reducing false positives/negatives. An important advantage of proposed model is that it uses just FLAIR MRI that reduces computational time and brings comfort to patients.

摘要

背景

多发性硬化症(MS)是一种中枢神经系统退行性疾病。MS患者大脑中有一些被称为MS病灶的坏死组织。MRI是一种对软组织(如大脑)敏感的成像技术,它将MS病灶显示为高强度或低强度信号。由于手动分割这些病灶既费力又耗时,因此需要自动分割。

材料与方法

为了分割MS病灶,提出了一种基于学习内核的方法。该方法主要有三个步骤,即预处理、子区域提取和分割。分割由一个内核执行。这个内核使用一种特殊类型的人工神经网络(ANN)的改进版本——大规模训练人工神经网络(MTANN)进行训练。该内核将周围像素信息作为特征,用于内核中间像素的分类。本研究的材料包括2008年医学图像计算与计算机辅助干预国际会议(MICCAI)MS病灶分割大赛数据集的一部分。

结果

定性和定量结果都显示出了有前景的结果。在某些情况下,70%的相似性指数被认为是令人信服的。这些结果仅从一个MRI通道的信息中获得,而非多通道MRI。

结论

本研究表明了通过学习内核将周围像素信息纳入分割的潜力。使用特殊的预处理流程以及减少假阳性/假阴性的后处理步骤,所提出方法的性能将得到提高。所提出模型的一个重要优点是它仅使用液体衰减反转恢复序列(FLAIR)MRI,这减少了计算时间,并给患者带来了便利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验