Suppr超能文献

基于磁共振图像的多发性硬化症脑损伤自动分割与容积测量

Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.

作者信息

Jain Saurabh, Sima Diana M, Ribbens Annemie, Cambron Melissa, Maertens Anke, Van Hecke Wim, De Mey Johan, Barkhof Frederik, Steenwijk Martijn D, Daams Marita, Maes Frederik, Van Huffel Sabine, Vrenken Hugo, Smeets Dirk

机构信息

icometrix, R&D, Leuven, Belgium.

icometrix, R&D, Leuven, Belgium ; Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.

出版信息

Neuroimage Clin. 2015 May 16;8:367-75. doi: 10.1016/j.nicl.2015.05.003. eCollection 2015.

Abstract

The location and extent of white matter lesions on magnetic resonance imaging (MRI) are important criteria for diagnosis, follow-up and prognosis of multiple sclerosis (MS). Clinical trials have shown that quantitative values, such as lesion volumes, are meaningful in MS prognosis. Manual lesion delineation for the segmentation of lesions is, however, time-consuming and suffers from observer variability. In this paper, we propose MSmetrix, an accurate and reliable automatic method for lesion segmentation based on MRI, independent of scanner or acquisition protocol and without requiring any training data. In MSmetrix, 3D T1-weighted and FLAIR MR images are used in a probabilistic model to detect white matter (WM) lesions as an outlier to normal brain while segmenting the brain tissue into grey matter, WM and cerebrospinal fluid. The actual lesion segmentation is performed based on prior knowledge about the location (within WM) and the appearance (hyperintense on FLAIR) of lesions. The accuracy of MSmetrix is evaluated by comparing its output with expert reference segmentations of 20 MRI datasets of MS patients. Spatial overlap (Dice) between the MSmetrix and the expert lesion segmentation is 0.67 ± 0.11. The intraclass correlation coefficient (ICC) equals 0.8 indicating a good volumetric agreement between the MSmetrix and expert labelling. The reproducibility of MSmetrix' lesion volumes is evaluated based on 10 MS patients, scanned twice with a short interval on three different scanners. The agreement between the first and the second scan on each scanner is evaluated through the spatial overlap and absolute lesion volume difference between them. The spatial overlap was 0.69 ± 0.14 and absolute total lesion volume difference between the two scans was 0.54 ± 0.58 ml. Finally, the accuracy and reproducibility of MSmetrix compare favourably with other publicly available MS lesion segmentation algorithms, applied on the same data using default parameter settings.

摘要

磁共振成像(MRI)上白质病变的位置和范围是多发性硬化症(MS)诊断、随访及预后的重要标准。临床试验表明,诸如病变体积等定量值对MS的预后具有重要意义。然而,通过人工勾勒病变轮廓来进行病变分割既耗时,又存在观察者间的差异。在本文中,我们提出了MSmetrix,这是一种基于MRI的准确可靠的病变分割自动方法,独立于扫描仪或采集协议,且无需任何训练数据。在MSmetrix中,3D T1加权和液体衰减反转恢复(FLAIR)MR图像被用于一个概率模型,以检测白质(WM)病变,将其作为正常脑组织的异常值,同时将脑组织分割为灰质、WM和脑脊液。实际的病变分割是基于对病变位置(在WM内)和外观(FLAIR上呈高信号)的先验知识进行的。通过将MSmetrix的输出与20个MS患者MRI数据集的专家参考分割结果进行比较,来评估MSmetrix的准确性。MSmetrix与专家病变分割之间的空间重叠率(Dice)为0.67±0.11。组内相关系数(ICC)等于0.8,表明MSmetrix与专家标记之间在体积上具有良好的一致性。基于10名MS患者评估了MSmetrix病变体积的可重复性,这些患者在三台不同的扫描仪上进行了短时间间隔的两次扫描。通过它们之间的空间重叠和绝对病变体积差异来评估每次扫描仪上第一次和第二次扫描之间的一致性。空间重叠率为0.69±0.14,两次扫描之间的绝对总病变体积差异为0.54±0.58毫升。最后,在使用默认参数设置应用于相同数据的情况下,MSmetrix的准确性和可重复性优于其他公开可用的MS病变分割算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验