Suppr超能文献

医学图像中异常组织的自动分割

Automated Segmentation of Abnormal Tissues in Medical Images.

作者信息

Homayoun Hassan, Ebrahimpour-Komleh Hossein

机构信息

PhD, Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Kashan, Kashan, Iran.

出版信息

J Biomed Phys Eng. 2021 Aug 1;11(4):415-424. doi: 10.31661/jbpe.v0i0.958. eCollection 2021 Aug.

Abstract

Nowadays, medical image modalities are almost available everywhere. These modalities are bases of diagnosis of various diseases sensitive to specific tissue type. Usually physicians look for abnormalities in these modalities in diagnostic procedures. Count and volume of abnormalities are very important for optimal treatment of patients. Segmentation is a preliminary step for these measurements and also further analysis. Manual segmentation of abnormalities is cumbersome, error prone, and subjective. As a result, automated segmentation of abnormal tissue is a need. In this study, representative techniques for segmentation of abnormal tissues are reviewed. Main focus is on the segmentation of multiple sclerosis lesions, breast cancer masses, lung nodules, and skin lesions. As experimental results demonstrate, the methods based on deep learning techniques perform better than other methods that are usually based on handy feature engineering techniques. Finally, the most common measures to evaluate automated abnormal tissue segmentation methods are reported.

摘要

如今,医学影像模态几乎随处可得。这些模态是对特定组织类型敏感的各种疾病诊断的基础。通常,医生在诊断过程中会在这些模态中寻找异常情况。异常的数量和体积对于患者的最佳治疗非常重要。分割是这些测量以及进一步分析的初步步骤。手动分割异常情况既繁琐、容易出错又主观。因此,需要对异常组织进行自动分割。在本研究中,回顾了用于分割异常组织的代表性技术。主要重点是多发性硬化症病变、乳腺癌肿块、肺结节和皮肤病变的分割。实验结果表明,基于深度学习技术的方法比通常基于便捷特征工程技术的其他方法表现更好。最后,报告了评估自动异常组织分割方法最常用的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19e6/8385212/11207723a80a/JBPE-11-415-g001.jpg

相似文献

1
Automated Segmentation of Abnormal Tissues in Medical Images.
J Biomed Phys Eng. 2021 Aug 1;11(4):415-424. doi: 10.31661/jbpe.v0i0.958. eCollection 2021 Aug.
2
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
Curr Med Imaging. 2020;16(5):513-533. doi: 10.2174/1573405615666190129120449.
3
Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling.
Neuroimage Clin. 2015 Oct 28;9:640-7. doi: 10.1016/j.nicl.2015.10.012. eCollection 2015.
5
Automated tissue segmentation of MR brain images in the presence of white matter lesions.
Med Image Anal. 2017 Jan;35:446-457. doi: 10.1016/j.media.2016.08.014. Epub 2016 Aug 30.
6
Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network.
Comput Biol Med. 2019 Jul;110:164-174. doi: 10.1016/j.compbiomed.2019.05.020. Epub 2019 May 30.
8
Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
Med Biol Eng Comput. 2020 Sep;58(9):2161-2175. doi: 10.1007/s11517-020-02225-6. Epub 2020 Jul 17.
9
Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
Eur Radiol. 2020 Mar;30(3):1297-1305. doi: 10.1007/s00330-019-06467-3. Epub 2019 Nov 11.
10

引用本文的文献

1
Modeling radiologists' cognitive processes using a digital gaze twin to enhance radiology training.
Sci Rep. 2025 Apr 21;15(1):13685. doi: 10.1038/s41598-025-97935-y.
2
Independent evaluation of the accuracy of 5 artificial intelligence software for detecting lung nodules on chest X-rays.
Quant Imaging Med Surg. 2024 Aug 1;14(8):5288-5303. doi: 10.21037/qims-24-160. Epub 2024 Jul 25.
3
Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine.
Curr Oncol. 2023 Feb 22;30(3):2673-2701. doi: 10.3390/curroncol30030203.

本文引用的文献

1
A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images.
J Biomed Phys Eng. 2018 Mar 1;8(1):117-126. eCollection 2018 Mar.
3
A hierarchical pipeline for breast boundary segmentation and calcification detection in mammograms.
Comput Biol Med. 2018 May 1;96:178-188. doi: 10.1016/j.compbiomed.2018.03.011. Epub 2018 Mar 16.
7
Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
IEEE Trans Med Imaging. 2017 Sep;36(9):1876-1886. doi: 10.1109/TMI.2017.2695227. Epub 2017 Apr 18.
8
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
9
Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks.
IEEE Trans Med Imaging. 2016 May;35(5):1160-1169. doi: 10.1109/TMI.2016.2536809. Epub 2016 Mar 1.
10
Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation.
IEEE Trans Med Imaging. 2016 May;35(5):1229-1239. doi: 10.1109/TMI.2016.2528821. Epub 2016 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验