Suppr超能文献

双重内凹腔可防止固湿表面发生灾难性浸湿转变。

Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.

机构信息

Water Desalination and Reuse Center (WDRC) and Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia.

出版信息

ACS Appl Mater Interfaces. 2017 Jun 28;9(25):21532-21538. doi: 10.1021/acsami.7b03526. Epub 2017 Jun 19.

Abstract

Omniphobic surfaces, that is, which repel all known liquids, have proven of value in applications ranging from membrane distillation to underwater drag reduction. A limitation of currently employed omniphobic surfaces is that they rely on perfluorinated coatings, increasing cost and environmental impact and preventing applications in harsh environments. Thus, there is a keen interest in rendering conventional materials, such as plastics, omniphobic by micro/nanotexturing rather than via chemical makeup, with notable success having been achieved for silica surfaces with doubly reentrant micropillars. However, we found a critical limitation of microtextures comprising pillars that they undergo catastrophic wetting transitions (apparent contact angles, θ → 0° from θ > 90°) in the presence of localized physical damages/defects or on immersion in wetting liquids. In response, a doubly reentrant cavity microtexture is introduced, which can prevent catastrophic wetting transitions in the presence of localized structural damage/defects or on immersion in wetting liquids. Remarkably, our silica surfaces with doubly reentrant cavities could exhibit apparent contact angles, θ ≈ 135° for mineral oil, where the intrinsic contact angle, θ ≈ 20°. Further, when immersed in mineral oil or water, doubly reentrant microtextures in silica (θ ≈ 40° for water) were not penetrated even after several days of investigation. Thus, microtextures comprising doubly reentrant cavities might enable applications of conventional materials without chemical modifications, especially in scenarios that are prone to localized damages or immersion in wetting liquids, for example, hydrodynamic drag reduction and membrane distillation.

摘要

具有排斥所有已知液体特性的超疏水表面在膜蒸馏和水下减阻等应用中已被证明具有价值。目前使用的超疏水表面的一个局限性是它们依赖于全氟涂层,这增加了成本和环境影响,并阻止了在恶劣环境中的应用。因此,人们非常感兴趣的是通过微/纳米结构化而不是通过化学组成使传统材料(如塑料)具有超疏水性,对于具有双复凹微柱的二氧化硅表面已经取得了显著的成功。然而,我们发现由柱子组成的微结构存在一个关键的局限性,即在存在局部物理损伤/缺陷或浸入润湿液体时,它们会经历灾难性的润湿转变(表观接触角θ从θ>90°变为θ=0°)。作为回应,引入了一种双复凹腔微结构,它可以在存在局部结构损伤/缺陷或浸入润湿液体时防止灾难性的润湿转变。值得注意的是,我们的具有双复凹腔的二氧化硅表面在接触矿物油时,表观接触角θ≈135°,而固有接触角θ≈20°。此外,当浸入矿物油或水中时,即使经过几天的研究,硅石中的双复凹微结构(对于水的θ≈40°)也没有被穿透。因此,具有双复凹腔的微结构可能使无需化学修饰的传统材料得到应用,特别是在容易发生局部损伤或浸入润湿液体的情况下,例如水动力减阻和膜蒸馏。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验