Genes and Dynamics of Memory Systems, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris 75005, France.
Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, USA.
Nat Commun. 2017 Jun 5;8:15510. doi: 10.1038/ncomms15510.
Efficient energy use has constrained the evolution of nervous systems. However, it is unresolved whether energy metabolism may resultantly regulate major brain functions. Our observation that Drosophila flies double their sucrose intake at an early stage of long-term memory formation initiated the investigation of how energy metabolism intervenes in this process. Cellular-resolution imaging of energy metabolism reveals a concurrent elevation of energy consumption in neurons of the mushroom body, the fly's major memory centre. Strikingly, upregulation of mushroom body energy flux is both necessary and sufficient to drive long-term memory formation. This effect is triggered by a specific pair of dopaminergic neurons afferent to the mushroom bodies, via the D5-like DAMB dopamine receptor. Hence, dopamine signalling mediates an energy switch in the mushroom body that controls long-term memory encoding. Our data thus point to an instructional role for energy flux in the execution of demanding higher brain functions.
高效的能量利用限制了神经系统的进化。然而,能量代谢是否会反过来调节大脑的主要功能还没有定论。我们观察到,果蝇在长期记忆形成的早期会将其蔗糖摄入量增加一倍,这促使我们开始研究能量代谢如何干预这一过程。对能量代谢的细胞分辨率成像显示,在果蝇主要记忆中心的蘑菇体神经元中,能量消耗同时升高。引人注目的是,上调蘑菇体的能量通量既是长期记忆形成所必需的,也是充分的。这种效应是由一对特定的多巴胺能神经元通过 D5 样 DAMB 多巴胺受体传入蘑菇体触发的。因此,多巴胺信号通过在蘑菇体中传递能量开关来控制长期记忆的编码。我们的数据表明,在执行高要求的大脑功能时,能量流起着指导作用。