Suppr超能文献

Gompertz模型在生长分析中的应用以及新的Gompertz模型方法:对统一理查兹族的补充

The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family.

作者信息

Tjørve Kathleen M C, Tjørve Even

机构信息

Inland Norway University of Applied Sciences, Elverum, Norway.

出版信息

PLoS One. 2017 Jun 5;12(6):e0178691. doi: 10.1371/journal.pone.0178691. eCollection 2017.

Abstract

The Gompertz model is well known and widely used in many aspects of biology. It has been frequently used to describe the growth of animals and plants, as well as the number or volume of bacteria and cancer cells. Numerous parametrisations and re-parametrisations of varying usefulness are found in the literature, whereof the Gompertz-Laird is one of the more commonly used. Here, we review, present, and discuss the many re-parametrisations and some parameterisations of the Gompertz model, which we divide into Ti (type I)- and W0 (type II)-forms. In the W0-form a starting-point parameter, meaning birth or hatching value (W0), replaces the inflection-time parameter (Ti). We also propose new "unified" versions (U-versions) of both the traditional Ti -form and a simplified W0-form. In these, the growth-rate constant represents the relative growth rate instead of merely an unspecified growth coefficient. We also present U-versions where the growth-rate parameters return absolute growth rate (instead of relative). The new U-Gompertz models are special cases of the Unified-Richards (U-Richards) model and thus belong to the Richards family of U-models. As U-models, they have a set of parameters, which are comparable across models in the family, without conversion equations. The improvements are simple, and may seem trivial, but are of great importance to those who study organismal growth, as the two new U-Gompertz forms give easy and fast access to all shape parameters needed for describing most types of growth following the shape of the Gompertz model.

摘要

冈珀茨模型广为人知,在生物学的许多方面都有广泛应用。它经常被用于描述动植物的生长,以及细菌和癌细胞的数量或体积。文献中发现了许多不同用途的参数化和重新参数化方法,其中冈珀茨 - 莱尔德方法是较为常用的一种。在这里,我们回顾、展示并讨论冈珀茨模型的许多重新参数化方法以及一些参数化方法,我们将其分为Ti(I型)和W0(II型)形式。在W0形式中,一个起始点参数,即出生或孵化值(W0),取代了拐点时间参数(Ti)。我们还提出了传统Ti形式和简化W0形式的新“统一”版本(U版本)。在这些版本中,生长速率常数代表相对生长速率,而不仅仅是一个未指定的生长系数。我们还展示了生长速率参数返回绝对生长速率(而非相对生长速率)的U版本。新的U - 冈珀茨模型是统一理查兹(U - 理查兹)模型的特殊情况,因此属于U模型的理查兹家族。作为U模型,它们有一组参数,在家族中的不同模型之间具有可比性,无需转换方程。这些改进很简单,可能看起来微不足道,但对研究生物体生长的人来说非常重要,因为这两种新的U - 冈珀茨形式能够轻松快速地获取描述大多数遵循冈珀茨模型形状的生长类型所需的所有形状参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec19/5459448/e90d9b89f510/pone.0178691.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验