Institute for Molecules and Materials, Radboud University Nijmegen , Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
J Am Chem Soc. 2017 Jun 21;139(24):8146-8151. doi: 10.1021/jacs.7b00632. Epub 2017 Jun 13.
Living systems rely on complex networks of chemical reactions to control the concentrations of molecules in space and time. Despite the enormous complexity in biological networks, it is possible to identify network motifs that lead to functional outputs such as bistability or oscillations. One of the greatest challenges in chemistry is the creation of such functionality from chemical reactions. A key limitation is our lack of understanding of how molecular structure impacts on the dynamics of chemical reaction networks, preventing the design of networks that are robust (i.e., function in a large parameter space) and resilient (i.e., reach their out-of-equilibrium function rapidly). Here we demonstrate that reaction rates of individual reactions in the network can control the dynamics by which the system reaches limit cycle oscillations, thereby gaining information on the key parameters that govern the dynamics of these networks. We envision that these principles will be incorporated into the design of network motifs, enabling chemists to develop "molecular software" to create functional behavior in chemical systems.
生命系统依赖于复杂的化学反应网络来控制分子在空间和时间上的浓度。尽管生物网络非常复杂,但我们可以识别出导致功能输出的网络模式,例如双稳态或振荡。化学领域面临的最大挑战之一是从化学反应中创造这种功能。一个关键的限制是我们缺乏对分子结构如何影响化学反应网络动力学的理解,这阻碍了设计具有鲁棒性(即在大参数空间中起作用)和弹性(即快速达到非平衡功能)的网络。在这里,我们证明网络中单个反应的反应速率可以通过控制系统达到极限环振荡的动力学来控制,从而获得控制这些网络动力学的关键参数的信息。我们设想这些原则将被纳入网络模式的设计中,使化学家能够开发“分子软件”,在化学系统中创造功能性行为。