Suppr超能文献

细胞信号通路构建模块中空间组织与生物化学的相互作用。

The interplay of spatial organization and biochemistry in building blocks of cellular signalling pathways.

作者信息

Krishnan J, Lu Lingjun, Alam Nazki Aiman

机构信息

Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.

Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.

出版信息

J R Soc Interface. 2020 May;17(166):20200251. doi: 10.1098/rsif.2020.0251. Epub 2020 May 27.

Abstract

Biochemical pathways and networks are central to cellular information processing. While a broad range of studies have dissected multiple aspects of information processing in biochemical pathways, the effect of spatial organization remains much less understood. It is clear that space is central to intracellular organization, plays important roles in cellular information processing and has been exploited in evolution; additionally, it is being increasingly exploited in synthetic biology through the development of artificial compartments, in a variety of ways. In this paper, we dissect different aspects of the interplay between spatial organization and biochemical pathways, by focusing on basic building blocks of these pathways: covalent modification cycles and two-component systems, with enzymes which may be monofunctional or bifunctional. Our analysis of spatial organization is performed by examining a range of 'spatial designs': patterns of localization or non-localization of enzymes/substrates, theoretically and computationally. Using these well-characterized systems, we analyse the following. (i) The effect of different types of spatial organization on the overall kinetics of modification, and the role of distinct modification mechanisms therein. (ii) How different information processing characteristics seen experimentally and studied from the viewpoint of kinetics are perturbed, or generated. (iii) How the activity of enzymes (bifunctional enzymes in particular) may be spatially manipulated, and the relationship between localization and activity. (iv) How transitions in spatial organization (encountered either through evolution or through the lifetime of cells, as seen in multiple model organisms) impacts the kinetic module (and pathway) behaviour, and how transitions in chemistry may be impacted by prior spatial organization. The basic insights which emerge are central to understanding the role of spatial organization in biochemical pathways in both bacteria and eukaryotes, and are of direct relevance to engineering spatial organization of pathways in bottom-up synthetic biology in cellular and cell-free systems.

摘要

生化途径和网络是细胞信息处理的核心。虽然广泛的研究剖析了生化途径中信息处理的多个方面,但空间组织的影响仍知之甚少。很明显,空间是细胞内组织的核心,在细胞信息处理中发挥着重要作用,并且在进化过程中已被利用;此外,通过人工隔室的开发,它在合成生物学中正以各种方式越来越多地被利用。在本文中,我们通过关注这些途径的基本组成部分:共价修饰循环和双组分系统,以及可能是单功能或双功能的酶,来剖析空间组织与生化途径之间相互作用的不同方面。我们通过在理论和计算上检查一系列“空间设计”:酶/底物的定位或非定位模式,来进行空间组织分析。使用这些特征明确的系统,我们分析以下内容。(i)不同类型的空间组织对修饰总体动力学的影响,以及其中不同修饰机制的作用。(ii)从动力学角度实验观察和研究的不同信息处理特征是如何受到干扰或产生的。(iii)酶(特别是双功能酶)的活性如何在空间上被操纵,以及定位与活性之间的关系。(iv)空间组织的转变(如在多种模式生物中通过进化或细胞寿命所遇到的)如何影响动力学模块(和途径)行为,以及化学转变如何受到先前空间组织的影响。所获得的基本见解对于理解细菌和真核生物中空间组织在生化途径中的作用至关重要,并且与在细胞和无细胞系统中自下而上的合成生物学中途径的工程化空间组织直接相关。

相似文献

1
The interplay of spatial organization and biochemistry in building blocks of cellular signalling pathways.
J R Soc Interface. 2020 May;17(166):20200251. doi: 10.1098/rsif.2020.0251. Epub 2020 May 27.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Covalent modification cycles through the spatial prism.
Biophys J. 2013 Oct 1;105(7):1720-31. doi: 10.1016/j.bpj.2013.06.050.
5
Symmetry breaking meets multisite modification.
Elife. 2021 May 21;10:e65358. doi: 10.7554/eLife.65358.
7
Design Principles for Compartmentalization and Spatial Organization of Synthetic Genetic Circuits.
ACS Synth Biol. 2019 Jul 19;8(7):1601-1619. doi: 10.1021/acssynbio.8b00522. Epub 2019 Jul 1.
9
Spatial localisation meets biomolecular networks.
Nat Commun. 2021 Sep 9;12(1):5357. doi: 10.1038/s41467-021-24760-y.

引用本文的文献

1
DNA as a universal chemical substrate for computing and data storage.
Nat Rev Chem. 2024 Mar;8(3):179-194. doi: 10.1038/s41570-024-00576-4. Epub 2024 Feb 9.
2
Clustering of catalytic nanocompartments for enhancing an extracellular non-native cascade reaction.
Chem Sci. 2021 Aug 31;12(37):12274-12285. doi: 10.1039/d1sc04267j. eCollection 2021 Sep 29.
3
Spatial localisation meets biomolecular networks.
Nat Commun. 2021 Sep 9;12(1):5357. doi: 10.1038/s41467-021-24760-y.
4
Symmetry breaking meets multisite modification.
Elife. 2021 May 21;10:e65358. doi: 10.7554/eLife.65358.
5
Dynamic bistable switches enhance robustness and accuracy of cell cycle transitions.
PLoS Comput Biol. 2021 Jan 7;17(1):e1008231. doi: 10.1371/journal.pcbi.1008231. eCollection 2021 Jan.

本文引用的文献

1
Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies.
ACS Biomater Sci Eng. 2015 Jun 8;1(6):345-351. doi: 10.1021/acsbiomaterials.5b00059. Epub 2015 May 26.
2
Building a synthetic mechanosensitive signaling pathway in compartmentalized artificial cells.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16711-16716. doi: 10.1073/pnas.1903500116. Epub 2019 Aug 1.
3
Spatial proteomics: a powerful discovery tool for cell biology.
Nat Rev Mol Cell Biol. 2019 May;20(5):285-302. doi: 10.1038/s41580-018-0094-y.
4
Cell-free microcompartmentalised transcription-translation for the prototyping of synthetic communication networks.
Curr Opin Biotechnol. 2019 Aug;58:72-80. doi: 10.1016/j.copbio.2018.10.006. Epub 2018 Dec 26.
5
Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32782-32791. doi: 10.1021/acsami.8b07573. Epub 2018 Sep 14.
6
Subcellular Organization: A Critical Feature of Bacterial Cell Replication.
Cell. 2018 Mar 8;172(6):1271-1293. doi: 10.1016/j.cell.2018.01.014.
7
Dynamics of Posttranslational Modification Systems: Recent Progress and Future Directions.
Biophys J. 2018 Feb 6;114(3):507-515. doi: 10.1016/j.bpj.2017.11.3787.
8
Engineered synthetic scaffolds for organizing proteins within the bacterial cytoplasm.
Nat Chem Biol. 2018 Feb;14(2):142-147. doi: 10.1038/nchembio.2535. Epub 2017 Dec 11.
10
Molecular Engineering of Robustness and Resilience in Enzymatic Reaction Networks.
J Am Chem Soc. 2017 Jun 21;139(24):8146-8151. doi: 10.1021/jacs.7b00632. Epub 2017 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验