Casellas Joaquim, Cañas-Álvarez Jhon Jacobo, Fina Marta, Piedrafita Jesús, Cecchinato Alessio
Grup de Recerca en Millora Genètica Molecular Veterinària,Departament de Ciència Animal i dels Aliments,Universitat Autònoma de Barcelona,08193 Bellaterra,Spain.
Grup de Recerca en Remugants,Departament de Ciència Animal i dels Aliments,Universitat Autònoma de Barcelona,08193 Bellaterra,Spain.
Genet Res (Camb). 2017 Jun 6;99:e4. doi: 10.1017/S0016672317000027.
Genome-wide association (GWA) studies play a key role in current genetics research, unravelling genomic regions linked to phenotypic traits of interest in multiple species. Nevertheless, the extent of linkage disequilibrium (LD) may provide confounding results when significant genetic markers span along several contiguous cM. In this study, we have adapted the composite interval mapping approach to the GWA framework (composite GWA), in order to evaluate the impact of including competing (possibly linked) genetic markers when testing for the additive allelic effect inherent to a given genetic marker. We tested model performance on simulated data sets under different scenarios (i.e., qualitative trait loci effects, LD between genetic markers and width of the genomic region involved in the analysis). Our results showed that the genomic region had a small impact on the number of competing single nucleotide polymorphisms (SNPs) as well as on the precision of the composite GWA analysis. A similar conclusion was derived from the preferable range of LD between the tested SNP and competing SNPs, although moderate-to-high LD seemed to attenuate the loss of statistical power. The composite GWA improved specificity and reduced the number of significant genetic markers. The composite GWA model contributes a novel point of view for GWA analyses where testing circumscribed to the genomic region flanking each SNP (delimited by the nearest competing SNPs) and conditioning on linked markers increases the precision to locate causal mutations, but possibly at the expense of power.
全基因组关联(GWA)研究在当前遗传学研究中发挥着关键作用,它能够揭示多个物种中与感兴趣的表型性状相关的基因组区域。然而,当显著的遗传标记跨越几个连续的厘摩(cM)时,连锁不平衡(LD)的程度可能会产生混淆结果。在本研究中,我们将复合区间作图方法应用于GWA框架(复合GWA),以评估在检测给定遗传标记固有的加性等位基因效应时纳入竞争性(可能连锁)遗传标记的影响。我们在不同场景下(即定性性状位点效应、遗传标记之间的LD以及分析中涉及的基因组区域宽度)对模拟数据集测试了模型性能。我们的结果表明,基因组区域对竞争性单核苷酸多态性(SNP)的数量以及复合GWA分析的精度影响较小。从测试SNP与竞争性SNP之间LD的优选范围也得出了类似结论,尽管中度至高LD似乎会减弱统计功效的损失。复合GWA提高了特异性并减少了显著遗传标记的数量。复合GWA模型为GWA分析提供了一个新的视角,在这种分析中,将测试限定在每个SNP侧翼的基因组区域(由最近的竞争性SNP界定)并以连锁标记为条件,可提高定位因果突变的精度,但可能会以功效为代价。