Suppr超能文献

在全球春大麦种质资源中进行农艺性状的全基因组关联研究。

Genome-wide association studies for agronomical traits in a world wide spring barley collection.

机构信息

Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr, 3, 06466 Gatersleben, Germany.

出版信息

BMC Plant Biol. 2012 Jan 27;12:16. doi: 10.1186/1471-2229-12-16.

Abstract

BACKGROUND

Genome-wide association studies (GWAS) based on linkage disequilibrium (LD) provide a promising tool for the detection and fine mapping of quantitative trait loci (QTL) underlying complex agronomic traits. In this study we explored the genetic basis of variation for the traits heading date, plant height, thousand grain weight, starch content and crude protein content in a diverse collection of 224 spring barleys of worldwide origin. The whole panel was genotyped with a customized oligonucleotide pool assay containing 1536 SNPs using Illumina's GoldenGate technology resulting in 957 successful SNPs covering all chromosomes. The morphological trait "row type" (two-rowed spike vs. six-rowed spike) was used to confirm the high level of selectivity and sensitivity of the approach. This study describes the detection of QTL for the above mentioned agronomic traits by GWAS.

RESULTS

Population structure in the panel was investigated by various methods and six subgroups that are mainly based on their spike morphology and region of origin. We explored the patterns of linkage disequilibrium (LD) among the whole panel for all seven barley chromosomes. Average LD was observed to decay below a critical level (r2-value 0.2) within a map distance of 5-10 cM. Phenotypic variation within the panel was reasonably large for all the traits. The heritabilities calculated for each trait over multi-environment experiments ranged between 0.90-0.95. Different statistical models were tested to control spurious LD caused by population structure and to calculate the P-value of marker-trait associations. Using a mixed linear model with kinship for controlling spurious LD effects, we found a total of 171 significant marker trait associations, which delineate into 107 QTL regions. Across all traits these can be grouped into 57 novel QTL and 50 QTL that are congruent with previously mapped QTL positions.

CONCLUSIONS

Our results demonstrate that the described diverse barley panel can be efficiently used for GWAS of various quantitative traits, provided that population structure is appropriately taken into account. The observed significant marker trait associations provide a refined insight into the genetic architecture of important agronomic traits in barley. However, individual QTL account only for a small portion of phenotypic variation, which may be due to insufficient marker coverage and/or the elimination of rare alleles prior to analysis. The fact that the combined SNP effects fall short of explaining the complete phenotypic variance may support the hypothesis that the expression of a quantitative trait is caused by a large number of very small effects that escape detection. Notwithstanding these limitations, the integration of GWAS with biparental linkage mapping and an ever increasing body of genomic sequence information will facilitate the systematic isolation of agronomically important genes and subsequent analysis of their allelic diversity.

摘要

背景

基于连锁不平衡(LD)的全基因组关联研究(GWAS)为检测和精细定位复杂农艺性状的数量性状基因座(QTL)提供了有希望的工具。在这项研究中,我们探索了来自世界各地的 224 个春大麦群体中,heading date、plant height、thousand grain weight、starch content 和 crude protein content 等性状变异的遗传基础。使用 Illumina 的 GoldenGate 技术,使用包含 1536 个 SNP 的定制寡核苷酸池测定法对整个面板进行基因分型,导致 957 个成功的 SNP 覆盖所有染色体。形态性状“穗型”(二棱穗对六棱穗)用于确认该方法的高选择性和灵敏度。本研究描述了通过 GWAS 检测上述农艺性状的 QTL。

结果

通过多种方法研究了面板中的群体结构,并基于穗型和起源区域将面板分为六个亚群。我们探索了整个面板中所有七个大麦染色体之间的连锁不平衡(LD)模式。在图谱距离为 5-10 cM 时,观察到平均 LD 低于临界水平(r2 值为 0.2)。面板内的表型变异对于所有性状均相当大。在多环境实验中计算出的每个性状的遗传力在 0.90-0.95 之间。为了控制群体结构引起的虚假 LD 并计算标记-性状关联的 P 值,测试了不同的统计模型。使用混合线性模型与亲缘关系来控制虚假 LD 效应,我们总共发现了 171 个与标记性状显著相关的关联,这些关联可以划分为 107 个 QTL 区域。在所有性状中,这些可以分为 57 个新 QTL 和 50 个与先前映射的 QTL 位置一致的 QTL。

结论

我们的结果表明,提供了一种有效的 GWAS 方法,用于各种数量性状的研究,前提是适当考虑群体结构。观察到的与标记显著相关的关联提供了对大麦重要农艺性状遗传结构的深入了解。然而,单个 QTL 仅占表型变异的一小部分,这可能是由于标记覆盖率不足和/或在分析之前消除了稀有等位基因。综合 SNP 效应不足以解释完整表型方差的事实可能支持这样的假设,即数量性状的表达是由大量逃避检测的非常小的效应引起的。尽管存在这些限制,但将 GWAS 与双亲连锁作图和不断增加的基因组序列信息相结合,将有助于系统地分离农艺重要基因,并随后分析其等位基因多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验